CFP last date
20 January 2025
Reseach Article

On the Stability of Functional Equations in Random Normed Spaces

by Renu Chugh, Ashish
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 45 - Number 11
Year of Publication: 2012
Authors: Renu Chugh, Ashish
10.5120/6825-9353

Renu Chugh, Ashish . On the Stability of Functional Equations in Random Normed Spaces. International Journal of Computer Applications. 45, 11 ( May 2012), 25-34. DOI=10.5120/6825-9353

@article{ 10.5120/6825-9353,
author = { Renu Chugh, Ashish },
title = { On the Stability of Functional Equations in Random Normed Spaces },
journal = { International Journal of Computer Applications },
issue_date = { May 2012 },
volume = { 45 },
number = { 11 },
month = { May },
year = { 2012 },
issn = { 0975-8887 },
pages = { 25-34 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume45/number11/6825-9353/ },
doi = { 10.5120/6825-9353 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:37:22.620465+05:30
%A Renu Chugh
%A Ashish
%T On the Stability of Functional Equations in Random Normed Spaces
%J International Journal of Computer Applications
%@ 0975-8887
%V 45
%N 11
%P 25-34
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Let f be a mapping from a linear space X into a complete Random Normed Space Y. In this paper, we prove some results for the stability of Cubic, Quadratic and Jensen-Type Quadratic functional equations in the setting of Random Normed Spaces (RNS).

References
  1. A. Wiwatwanich and P. Nakmahachalasint : On the stability of a Cubic Functional Equation, Thai Journal of Mathematics, Special Issue (Annual Meeting in Mathematics, 2008) : 69-76.
  2. A. N. Sherstnev : On the notion of a random normed space. Dpkl. Akad. Nauk SSSR 149,280-283(1963) (in Russian).
  3. B. Schweizer and A. Sklar : Prpbabilistic Metric Spaces. North-Holland, New York(1983).
  4. C. Alsina, B. Schweizer and A. Sklar : On the definition of a probabilistic normed space. equ. Math. 46, 91-98(1993)
  5. C. Park : On the Stability of the Linear Mapping in Banach Modules, J. Math. Anal. Appl. , 275 (2002), 711–720.
  6. C. Park and Th. M. Rassias : Isometric Additive Mappings in Generalized Quasi-Banach spaces, Banach J. Math. Anal. , 2 (2008), 59–69.
  7. D. H. Hyers : On the Stability of the Linear Functional Equation, Proc. Nat. Acad. Sci. U. S. A. 27(1941), 222–224.
  8. D. H. Hyers and Th. M. Rassias : Approximate Homomorphisms, Aequationes Math. , 44 (1992), 125–153.
  9. D. H. Hyers : On the stability of the Linear Functional Equation, Procc. of the National Academy of science of the U. S. A. , 27(1941), pp. 867-878.
  10. E. Baktash, Y. J. Cho, M. Jalili, R. Saadati and S. M. Vaezpour: On the Stability of Cubic Mapping and Quadratic Mapping in Random Normed Spaces, Journal of Inequalities and Appl. , Vol. 2008,Article ID 902187, 11 pages.
  11. F. Skof : Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano, 53(1983) 113-129.
  12. I. -S. Chang, Jun, K. -W. and Y. S. Jung : The modified Hyers – Ulam – Rassias stability of a cubic type functional equation, Math. Inequal. Appl. 8(4)(2005) pp. 675683.
  13. I. -S. Chang and Y. S. Jung : Stability of functional equation deriving from cubic and quadratic functions, Journal of Mathematical Analysis and Appl. 282(2003) 491-500
  14. K. W. Jun and H. M. Kim : The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Anal. Appl. 274(2) (2002) pp. 867-878.
  15. K. H. Park and Y. S. Jung : Stability of a cubic functional equation on qroups, Bulletin of the Korean Mathematical Society, vol. 41,no. 2,pp. 347-357,2004.
  16. M. S. Moslehian : On the Orthogonal Stability of the Pexiderized Quadratic Equation, J. Difference Equ. Appl. , 11 (2005), 999–1004.
  17. P. W. Cholewa : Remarks on the stability of functional equations, Aequations Math. 27(1984) 76-86.
  18. P. Gavruta : A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings, J. Math. Anal. Appl. 184 (1994), 431–436.
  19. S. M. Ulam : A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
  20. S. M. Ulam : Problems on Modern Mathematics, John Wiley and Sons, New York, NY, USA, 1964.
  21. S. Czerwik : Functional Equations and Inequalities in Several Variables, World Scienti?c Publ. Co. , New Jersey, London, Singapore and Hong Kong, 2002.
  22. S. Czerwik : Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press Inc. , Palm Harbor, Florida, 2003.
  23. S. Jung,: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press Inc. , Palm Harbor, Florida, 2001.
  24. S. Y. Jang, Rye Lee, C. Park and Dong Yun Shin : Fuzzy stability of Jensen – Type Quadratic functional equations, Abstract and Applied Analysis, vol. 2009,Article ID 535678.
  25. Th. M. Rassias : On the stability of the Linear mapping in Banach spaces, Procc. Of the American Mathematical Society, vol. 72, no. 2, pp. 297-300,1978.
  26. Th. M. Rassias : Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math. , 39 (1990), 292–293; 309.
  27. Th. M. Rassias : On the Stability of Functional Equations in Banach spaces, J. Math. Anal. Appl. , 251 (2000), 264–284.
  28. T. Aoki: On the stability of the linear transformation in Banach spaces, Journal of the Mathematical Society, vol. 2, no. 1-2, pp. 64-66,1950.
Index Terms

Computer Science
Information Sciences

Keywords

Quadratic Functional Equation Cubic Functional Equation Jensen-type Quadratic Functional Equation Hyers-ulam-rassias Stability Random Normed Spaces