We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Studies on Research and Development in Web Mining

by Pawan Singh, Amit Kumar, Prashast
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 44 - Number 9
Year of Publication: 2012
Authors: Pawan Singh, Amit Kumar, Prashast
10.5120/6293-8490

Pawan Singh, Amit Kumar, Prashast . Studies on Research and Development in Web Mining. International Journal of Computer Applications. 44, 9 ( April 2012), 28-32. DOI=10.5120/6293-8490

@article{ 10.5120/6293-8490,
author = { Pawan Singh, Amit Kumar, Prashast },
title = { Studies on Research and Development in Web Mining },
journal = { International Journal of Computer Applications },
issue_date = { April 2012 },
volume = { 44 },
number = { 9 },
month = { April },
year = { 2012 },
issn = { 0975-8887 },
pages = { 28-32 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume44/number9/6293-8490/ },
doi = { 10.5120/6293-8490 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:35:07.383788+05:30
%A Pawan Singh
%A Amit Kumar
%A Prashast
%T Studies on Research and Development in Web Mining
%J International Journal of Computer Applications
%@ 0975-8887
%V 44
%N 9
%P 28-32
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

World Wide Web has changing into one amongst the foremost comprehensive data resources. It most likely, if not perpetually, covers the data requirement for any user. However the net demonstrates several radical variations to traditional information containers such as databases in schema, volume, topic coherence etc. Web mining techniques could be applied to fully use web information in an effective and efficient manner, partially or completely. However, mining techniques are not the only tools to use web information efficiently but the mining techniques are the best solution. In this paper we study Web mining, Web mining categories and overview of various research issues and development efforts in web mining.

References
  1. Web Mining: Research and Practices, PRANAM KOLARI and ANUPAM JOSHI, IEEE, 2004.
  2. A Novel page ranking method based on Link –Visits of Web Pages , A. k Sharma ,Neelam Duhan,,Gyanendra kumar. International journal of trends in engineering and technology vol 4, no 1 nov 2010.
  3. CM Brown ,BB Danzing ,D Hordy ,U. Manber and MF Schwartz ;The harvest information discovery and access system. In Proc. 2nd International WWW Conference 1994 .
  4. K. Hammond ,R. Burke ,C. Martin and S. Lytinen . FAQ Finder :A case based approach to knowledge navigation . In Working Notes of the AAAI Press ,1995 .
  5. T. KIRK ,A K Levy ,Y Sagiv and D. Srivastava . The information manifold. In Working Notes of the AAAI Spring Symposium: Information gathering from heterogeneous ,Distributed Environments ,AAAI press ,1995.
  6. C. Kwok and D . Weld . Planning to gather information. In Proc . 11th National Conference on AI,1996.
  7. E. Spertus. Parasite: mining structural information on the web . In Proc. Of 6th International World Wide Web Conference,1997.
  8. R. B. Doorenbos ,O. Etzioni,and D. S. Weld . A scalable comparison shopping agent for the world wide web. Technical Report 96-01-03, University of Washington,Dept. Of Computer Science and Engineering ,1996.
  9. M. Perkowitz and O. Etzioni . Category translation: learning to understanding information on the internet. In Proc. 15th International Joint Conference on AI, pages 930-936, Montral, Canada, 1995.
  10. A. Z. Broder ,S. C. Glassman ,M. S. Manasse, and G Zweig. Syntactic clustering of the web . In Proc. Of 6th International World Wide Web Conference, 1997.
  11. C. Chang and C. Hsu. Customizable multi -engine search tool with clustering. In Proc. Of 6th International World Wide Web Conference, 1997.
  12. Y. S Maarek and I. Z. Ben Shaul . Automatically organizing bookmarks per content . In Proc. Of 5th International World Wide Web Conference,1996.
  13. M. R. Wulfekuhler and W. F. Punch. Finding salient features for personal web pages categorization. In Proc. Of 6th International World Wide Web Conference,1997.
  14. R. Weiss, B. Velez ,M. A. Sheldon ,C . Namprempre ,P. Szilagyi ,A. Duda, and D. K. Gifford . Hypursuit : a hierarchical network search engine that exploits content –link hypertext clustering . In Hypertext '96: The Seventh ACM Conference on Hypertext ,1996.
  15. R. Armstrong ,D. Freitag, T. Joachims , and T. Mitchell. Webwatcher :A learning apprentice for the world wide web . I Proc. AAAI Spring Symposium on Information Gathering from Heterogeneous ,Distributed Environments ,1995.
  16. W. B. Frakes and R. Baeza- Yates . Information Retrieval Data Structures and Algorithms . Prentice Hall, Englewood Cliffs ,NJ , 1992.
  17. K. A. Oostendorp ,W. F. Punch ,and R. W. Wiggins . A tool for individualizing the web. In Proc. Of 2nd International World Wide Web Conference,1994.
  18. U . Shardanand and P. Maes . Social information filtering: Algorithm for automating "word of mouth". In Proc. Of 1995 Conference on Human Factors in Computing Systems (CHI- 95), pages 210- 217, 1995.
  19. O. R. Zaiane and J. Han. Resource and knowledge discovery in global information systems: A preliminary design and experiment. In Proc. Of the First Int'l Conference on knowledge Discovery and Data Mining, pages 331-336 ,Montreal ,Quebec ,1995.
  20. I. Khosla ,B. Kuhn, and N . Soparkar . Database search using information mining . In Proc. Of 1996 ACMSIGMOD Int. Conf. On Management of Data, 1996.
  21. R. King and M. Novak. Supporting information infrastructure for distributed, heterogeneous knowledge discovery. In Proc. SIGMOD 96 Workshop on Research Issues on Data Mining and Knowledge Discovery ,Montreal , Canada, 1996.
  22. D. Konopnicki and O. Shumeli. W3qs: A query system for the World Wide Web. In Proc. Of 21th VLDB Conference, pages 54-65 ,Ziruch ,1995.
  23. L. Lakshmanan ,F. Sadri , and I. N. Subramanian. A declarative language for querying and restructuring the web. In Proc. Of 6th International Workshop on Research Issues in Data Engineering: Interoperability on Nontraditional Database Systems (RIDE-NDS'96),1996.
  24. D. Quass , A. Rajaraman ,Y. Sagiv ,J. Ullman, and J. Widom. Querying semistructured heterogeneous information. In International Conference on Deductive and Object Oriented Databases, 1995.
  25. J. Srivastav ,R. Cooley ,M. Deshpande, and P. N. Tan. Web usage mining: Discovery and applications of usage patterns from web data . SIGKDD Explorations, 1(2) , 2000.
  26. B. Masand and M. Spiliopoulou. Webkdd-99: Workshop on web usage analysis and user profiling. ACMSIGKDD Explorations, 1(2) , 2000.
  27. U. Fayyad , G. Piatetsky- Shapiro, and P. Smyth. From data minig to knowledge discovery: An overview . In Proc. ACM KDD, 1994.
  28. M. S. Chen, J. Han, and P. S. Yu. Data mining: An overview from a database perspective . IEEE Transactions on Knowledge and Data Engineering, 8(6): 866-833 ,1996.
  29. J. Klienberg, "Authoritive zsources in a hyperlinked environment" , Journal of the ACM,46 1999.
  30. Av. Padre Tomás, S. J. , Taipa, Macao S. A. R. ," Web Structure Mining: An Introduction", Proceedings of the 2005 IEEE International Conference on Information Acquisition June 27 - July 3, 2005, Hong Kong and Macau, China
  31. S. Brin and L. Page , "The natomy of a large -scale hypertext (Web) search engine" , Proc. 7th International World Wide Web Conference,1998.
  32. SPIRE 2004; H. C. Lee, "Metasearch via the co-citation graph, in Proc. IC 2003; H. C. Lee and A. Borodin,"Perturbation of the hyperlinked-environment"
  33. R. Lempel and S. Moran, The stochastic approach for link –structure analysis (SALSA) and the TKC effect. Proc. 9th International World Wide Web Conference May 2000.
  34. R. Khosala,H. Blockeel,SIGKDD Exploration , ACM SIGKDD,July 2000.
Index Terms

Computer Science
Information Sciences

Keywords

World Wide Web Web Mining Data Mining