CFP last date
20 January 2025
Reseach Article

Theoretical and Numerical Analysis of Electrocatalytic Processes at Conducting Polymer Modified Electrodes

by S. P. Ananthi, A. Meena, L. Rajendran, N. Ramaraj
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 44 - Number 8
Year of Publication: 2012
Authors: S. P. Ananthi, A. Meena, L. Rajendran, N. Ramaraj
10.5120/6282-8451

S. P. Ananthi, A. Meena, L. Rajendran, N. Ramaraj . Theoretical and Numerical Analysis of Electrocatalytic Processes at Conducting Polymer Modified Electrodes. International Journal of Computer Applications. 44, 8 ( April 2012), 11-19. DOI=10.5120/6282-8451

@article{ 10.5120/6282-8451,
author = { S. P. Ananthi, A. Meena, L. Rajendran, N. Ramaraj },
title = { Theoretical and Numerical Analysis of Electrocatalytic Processes at Conducting Polymer Modified Electrodes },
journal = { International Journal of Computer Applications },
issue_date = { April 2012 },
volume = { 44 },
number = { 8 },
month = { April },
year = { 2012 },
issn = { 0975-8887 },
pages = { 11-19 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume44/number8/6282-8451/ },
doi = { 10.5120/6282-8451 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:34:59.960179+05:30
%A S. P. Ananthi
%A A. Meena
%A L. Rajendran
%A N. Ramaraj
%T Theoretical and Numerical Analysis of Electrocatalytic Processes at Conducting Polymer Modified Electrodes
%J International Journal of Computer Applications
%@ 0975-8887
%V 44
%N 8
%P 11-19
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A theoretical model of an electrocatalytic processes taking place at conducting polymer modified electrodes is discussed. In this model the diffusion of solution species, charge carriers and chemical reaction within the film are taken into account. The model involves the system of non-linear non-steady-state reaction diffusion equations. Analytical expressions pertaining to the concentrations are obtained in terms of second-order reaction rate constant. Also simple theoretical expression of transient current is derived. In this paper, a powerful analytical method, called Homotopy analysis method (HAM) is used to obtain approximate solutions for a non-linear partial differential equation. The obtained approximate solution in comparison with the numerical ones is found to be in satisfactory agreement.

References
  1. Shriakawa H. , (2001) The discovery of polyacetylene film: The dawning of an era of conducting polymers, Synth. Metals. 125,3.
  2. MacDiarmid A. G. , (2001) Synthetic metals: a novel role for organic polymers, Synth. Metals. 125, 11.
  3. Heeger A. J. , (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials, Synth. Metals. 125, 23.
  4. Wring S. A. and Hart J. P. , (1992) Chemically modified, carbon paste electrodes and their application as electrochemical sensors for the analysis of biologically important compounds. A review, Analyst. 117, 1215.
  5. (a) Karyakin A. A. , Bobrova O. A. , and Karyakina E. E. , (1995) Electroreduction of NAD+ to enzymatically active NADH at poly (neutral red) modified Electrodes, J. Electroanal. Chem. 399, 179; (b) Karyakin A. A. , Gitelmacher O. V. and Karyakina, (1995) Prussian blue-based first generation biosensor A sensitive amperometric electrode for glucose, Anal. Chem. 67, 2419.
  6. Bartlett P. N. , Birkin P. R. and Wallace E. K. N. , (1997) Oxidation of ?-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes, J. Chem. Soc. Faraday. Trans. 93, 1951.
  7. Lyons M. E. G. , (1994) Electrocatalyis using electroactive polymers, electroactive composites and microheterogeneous systems, Analyst. 119, 805.
  8. Malinauskas A. , (1999) Electrocatalysis at conducting polymers, Synth. Metals. 107, 75.
  9. Ramanavi?cius A. , Ramanavi?cien?e A. , Malinauskas A. , (2006) Electrochemical sensors based on conducting polymer-polypyrrole, Electrochim. Acta. 51, 6025.
  10. Naujikas R. , Malinauskas A. , Ivanauskas F. , (2007) Modeling of electrocatalytic processes at conducting polymer modified electrodes, J. Math. Chem. 42, 1069.
  11. Liao S. J. , Tan Y. , (2007) A general approach to obtain series solutions of nonlinear differential equations, Studies in Applied Mathematics. 119, 297-354.
  12. Liao S. J. , (1992) The proposed Homotopy analysis technique for the solution of nonlinear problems, Ph. D. , Thesis, Shanghai Jiao Tong University.
  13. Liao S. J. , (2010) An optimal Homotopy-analysis approach for strongly nonlinear differential equations, Comm. Non-linear. Sci. Numer. Simulat. 15, 2003-2016.
  14. Awawdeh F. , Jaradat H. M. , Alsayyed O. , (2009) Solving system of DAEs by Homotopy analysis method, Chaos, Solitons and Fractals. 42, 1422-1427.
  15. Jafari H. , Chun C. , Seifi S. , Saeidy M. , (2009) Analytical solution for nonlinear gas dynamic equation by Homotopy analysis method, Appl. Math. 4, 149-154.
  16. Sohouli A. R. , Famouri M. , Kimiaeifar A. , Domairry G. , (2010) Application of Homotopy analysis method for natural convection of Darcian fluid about a vertical full cone embedded in pours media prescribed surface heat flux, Comm. Nonlinear. Sci. Numer. Simulat. 15, 1691-1699.
  17. Domairry G. , Fazeli M. , (2009) Homotopy analysis method to determine the efficiency of convective straight fins with temperature-dependent thermal conductivity, Comm. Nonlinear. Sci. Numer. Simulat. 14, 489- 499.
  18. Liao S. J. , On the Homotopy analysis method for non-linear problems, Appl. Math. Comput. 147 (2004) 499-513.
  19. Domairry G. , Bararnia H. , (2008) An approximation of the analytic solution of some nonlinear heat transfer equations: A Survey by using Homotopy analysis method, Adv. Studies Theor. Phys. 2, 507-518.
  20. Liao S. J. , (2003) Beyond Perturbation: Introduction to the Homotopy analysis method. 1st Edn. Chapman and Hall, CRC Press, Boca Raton, p: 336.
Index Terms

Computer Science
Information Sciences

Keywords

Electrocatalysis Polymer Modified Electrode Polyaniline Non-linear Differential Equations Homotopy Analysis Method Simulation