We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Heat and Mass Transfer of a Chemically Reacting Micropolar Fluid Over a Linear Streaching Sheet in Darcy Forchheimer Porous Medium

by S. Rawat, R. Bhagrava, S. Kapoor, O. Anwar Beg
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 44 - Number 6
Year of Publication: 2012
Authors: S. Rawat, R. Bhagrava, S. Kapoor, O. Anwar Beg
10.5120/6270-8431

S. Rawat, R. Bhagrava, S. Kapoor, O. Anwar Beg . Heat and Mass Transfer of a Chemically Reacting Micropolar Fluid Over a Linear Streaching Sheet in Darcy Forchheimer Porous Medium. International Journal of Computer Applications. 44, 6 ( April 2012), 40-51. DOI=10.5120/6270-8431

@article{ 10.5120/6270-8431,
author = { S. Rawat, R. Bhagrava, S. Kapoor, O. Anwar Beg },
title = { Heat and Mass Transfer of a Chemically Reacting Micropolar Fluid Over a Linear Streaching Sheet in Darcy Forchheimer Porous Medium },
journal = { International Journal of Computer Applications },
issue_date = { April 2012 },
volume = { 44 },
number = { 6 },
month = { April },
year = { 2012 },
issn = { 0975-8887 },
pages = { 40-51 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume44/number6/6270-8431/ },
doi = { 10.5120/6270-8431 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:34:52.716603+05:30
%A S. Rawat
%A R. Bhagrava
%A S. Kapoor
%A O. Anwar Beg
%T Heat and Mass Transfer of a Chemically Reacting Micropolar Fluid Over a Linear Streaching Sheet in Darcy Forchheimer Porous Medium
%J International Journal of Computer Applications
%@ 0975-8887
%V 44
%N 6
%P 40-51
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In the present study, an analysis is carried out to study two-dimensional, laminar boundary layer flow and mass transfer of a micropolar chemically-reacting fluid past a linearly stretching surface embedded in a porous medium. Such a study finds important applications in geochemical systems and also chemical reactor process engineering. The non-linear partial boundary layer differential equations, governing the problem under consideration, have been transformed by a similarity transformation into a system of ordinary differential equations, which is solved numerically by using the galerkin finite element method. The numerical outcomes thus obtained are depicted graphically to illustrate the effect of different controlling parameters on the dimensionless velocity, temperature and concentration profiles. Comparisons of finite element method and finite difference method is also presented in order to test the accuracy of the methods and the results obtained are found to have an excellent agreement. Finally, the numerical values for quantities of physical interest like local Nusselt number and skin friction are also presented in tabular form.

References
  1. Bertolazzi E. , A finite volume scheme for two-dimensional chemically-reactive hypersonic flow, Int. J. Num. Meth. Heat Fluid Flow, 8 (8) (1998) 888-933.
  2. Keller J. O. and Daily J. W. , The effects of highly exothermic chemical reaction on a two-dimensional mixing layer, AIAA J. , 23 (1985)1937-1945.
  3. Kelemen P. , Dick P. and Quick J. , Production of harzburgite by pervasive melt rock-reaction in the upper mantle, Nature, 358 (1992) 635-641.
  4. Zeiser T. , Lammers P. , Klemm E. , Li Y. W. , Bernsdorf J. and Brenner G. , CFD Calculation of flow, dispersion and reaction in a catalyst filled tube by lattice Boltzmann method, Chem. Eng. Sci. , 56 (4) (2001) 1697-1704.
  5. Levenspiel O. , Chemical Reaction Engineering, John Wiley, New York, 3rd edition (1999).
  6. Acrivos A. , On laminar boundary layer flows with a rapid homogenous chemical reaction, Chem. Eng. Sci. 13 (1960) 57.
  7. Takhar H. S. and Soundalgekar V. M. , On the diffusion of a chemically reactive species in a laminar boundary layer flow past a porous plate. "L" Aerotechnica Missili E. Spazio. 58 (1980) 89-92.
  8. Merkin J. H. and Chaudhary M. A. , Free convection boundary layers on vertical surfaces driven by an exothermic reaction, Q. J. Mechanics Applied Math. 47 (1994) 405-428.
  9. Shateyi S. , Sibanda P. and Motsa S. S. , An asymptotic analysis of convection in boundary layer flow in the presence of a chemical reaction, Archives of Mechanics, 57 (1) (2005) 24-41.
  10. Pop I. , Soundalgekar V. M. and Takhar H. S. , Dispersion of a soluble matter in a porous medium channel with homogenous and heterogenous chemical reaction. Revue Romanie. Mecanique Appliquee 28 (1983) 127-132.
  11. Aharonov E. , Spiegelman M. and Kelemen P. , Three-dimensional flow and reaction in porous media: implications for the earth's mantle and sedimentary basins, J. Geophys. Res. 102 (1997) 14821-14834.
  12. Fogler H. S. and Fredd C. , The influence of transport and reaction on wormhole formation in porous media, A I Chem E J. 44 (1998) 1933.
  13. Sakiadis B. C. , Boundary layer behaviour on continuous solid surface II: The boundary layer on a continuous flat surface, A I Chem E J. 7 (1961b) 221-225.
  14. Vlegger J. , Laminar boundary layer behaviour on continuous accelerating surfaces, Chem. Eng. Sci. 32 (1977) 1517-1528.
  15. Takhar H. S. , Chamkha A. J. and Nath G. , Flow and mass transfer on a stretching sheet with a magnetic field and chemically reactive species, Int. J. Engineering. Science 38 (2000) 1303-1314.
  16. Acharya M. , Singh L. P. and Dash G. C. , Heat and mass transfer over an accelerating surface with heat source in the presence of suction/blowing, Int. J. Engineering Science 37 (1999) 189-201.
  17. Eringen A. C. , Theory of Micropolar Fluids, J. Mathematics Mechanics 16 (1966) 1-18.
  18. Eringen A. C. , Theory of Thermomicrofluids, Mathematical analysis and Applications Journal 38 (1972) 480-496.
  19. Hassanien I. A. and Gorla R. S. R. , Mixed convection boundary layer flow of a micropolar fluid near a stagnation point on a horizontal cylinder, Int. J. Engng Sci. , 28 (1990) 153-161.
  20. Agarwal R. S. , Bhargava R. and Balaji A. V. S. , Finite element solution of flow and heat transfer of a micropolar fluid over a stretching sheet, Int. J. Engineering Science, 27 (1989) 1421-1440.
  21. Bhargava R. , Takhar H. S. , Agarwal R. S. and Balaji A. V. S. , Finite element solution of micropolar fluid flow and heat transfer between two porous discs, Int. J. Engineering Science 38 (2000) 1907-1922.
  22. Crane L. J. , Flow past a stretching plate, J. Applied Mathematics and Physics, ZAMP 21 (1970) 645-657.
  23. Afify A. A. , MHD free convective flow and mass transfer over a stretching sheet with chemical reaction, Heat and Mass Transfer 40 (2004) 495-500.
  24. Gebhart B. , Jaluria Y. , Mahajan R. L. , Sammakia B. , Buoyancy-induced flows and transport, Hemisphere USA (1998).
  25. Kim Y. J. , Heat and mass transfer in MHD micropolar flow over a vertical moving porous plate in a porous medium, Transp. Porous Media J. 56 (2004) 17-37.
  26. Beg O. A. , Bhargava R. , Rawat S. , Takhar H. S. , Beg T. A. "A Study of Steady Buoyancy- Driven Dissipative Micropolar Free Convective Heat and Mass Transfer in a Darcian Porous Regime with Chemical Reaction . , Nonlinear Analysis: Modeling and Control, , 12, 2, 157–180 (2007)
  27. Bég O. A. , Bhargava R. , Rawat S. , Kalim Halim and Takhar H. S. "Computational modeling of biomegnatics micropolar blood flow and heat transfer in a two dimensional non-darcian porous channel. Meccanica 43: 391–410 (2008)
  28. S. Rawat & R. Bhargava . " Finite element study of natural convection heat and mass transfer in a micropolar fluid-saturated porous regime with soret/dufour effects . , Int. J. of Appl. Math and Mech. 5, 2, 58-71. (2009)
  29. S. Rawat, R. Bhargava and O. Anwar Bég. , "Hydromagnetic micropolar free convection heat and mass transfer in a darcy-forchheimer porous medium with thermophysical effects: finite element solutions . , Int. J. of Appl. Math and Mech, 6, 13, 72-93 (2010)
  30. H. Usman M. M. Hamza B. Y Isah . , Unsteady MHD Micropolar Flow and Mass Transfer Past a Vertical Permeable Plate with Variable Suction. , International Journal of Computer Applications 36(4), 2011
  31. H. Usman M. M. Hamza M. O Ibrahim. , Radiation-Convection Flow in Porous Medium with Chemical Reaction. , International Journal of Computer Applications 36(2), 2011
Index Terms

Computer Science
Information Sciences

Keywords

Galerkin Finite Element Method Skin Friction Linearly Stretching Sheet Chemically Reacting Fluid