We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Modified Unsupervised Image Segmentation based on Gaussian Mixture Model for Traffic Surveillance Applications

by K. Siva Nagi Reddy, Bhanu Murthy Bhaskara, B. R. Vikram
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 44 - Number 3
Year of Publication: 2012
Authors: K. Siva Nagi Reddy, Bhanu Murthy Bhaskara, B. R. Vikram
10.5120/6247-8291

K. Siva Nagi Reddy, Bhanu Murthy Bhaskara, B. R. Vikram . Modified Unsupervised Image Segmentation based on Gaussian Mixture Model for Traffic Surveillance Applications. International Journal of Computer Applications. 44, 3 ( April 2012), 41-48. DOI=10.5120/6247-8291

@article{ 10.5120/6247-8291,
author = { K. Siva Nagi Reddy, Bhanu Murthy Bhaskara, B. R. Vikram },
title = { Modified Unsupervised Image Segmentation based on Gaussian Mixture Model for Traffic Surveillance Applications },
journal = { International Journal of Computer Applications },
issue_date = { April 2012 },
volume = { 44 },
number = { 3 },
month = { April },
year = { 2012 },
issn = { 0975-8887 },
pages = { 41-48 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume44/number3/6247-8291/ },
doi = { 10.5120/6247-8291 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:34:38.286568+05:30
%A K. Siva Nagi Reddy
%A Bhanu Murthy Bhaskara
%A B. R. Vikram
%T Modified Unsupervised Image Segmentation based on Gaussian Mixture Model for Traffic Surveillance Applications
%J International Journal of Computer Applications
%@ 0975-8887
%V 44
%N 3
%P 41-48
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper deals with an efficient image segmentation algorithm for video images which is quite useful for video based traffic surveillance applications. It includes video segmentations, morphological operations and labeling. In the field of surveillance system, effective video object segmentation is a conveyance for video analysis and processing. It presents a new algorithm for video object segmentation i. e. unsupervised image segmentation based on Gaussian mixture model with modified EM procedure. It uses the spatial unsupervised GMM clustering technique in which the objective function is modified or the prior term is added in the Bayesian. Firstly we use EM algorithm to estimate the distribution of input image data with which the number of mixture components is automatically determined. Secondly the segmentation is arrived at by clustering each pixel into the appropriate component according to the Minimum Message Length (MML) criterion with the help of appropriate priors like Dirichlet-Normal-Wishart (DNW) prior. The proposed technique automatically decides the best number of clusters for images. The best number of clusters is obtained by using the cluster validity criterion with the help of Gaussian distribution.

References
  1. Reed T. and du Buf J. M. H. (1993) CVGIP Image Understanding, vol. 57, pp. 359–372.
  2. Li J. , Najmi A. , and Gray R. M. (2000) IEEE Trans. Sig. Proc. , vol. 48, no. 2, pp. 517–533.
  3. Povlow B. R. And Dunn S. M. (1995) IEEE Trans. Patt. Anal. Mach. Intell. , vol. 17, no. 10, pp. 1010–1014.
  4. G. Fan and X. -G. Xia (2000) Proc. 34th Asilomar Conf. Signals, Systems and Computers.
  5. Choi H. And Baraniuk R. G. (1999) Proc. SPIE Tech. Conf. Mathematical Modeling, Bayesian Estimation and Inverse Problems, pp. 306–320.
  6. Prasad Reddy PVGD et al (2007) International Journal of Computer Science and Network Security, VOL. 7 No. 4.
  7. Safarinejadian, B. , M. B. Menhaj and M. Karrari, 2009. Distributed data clustering using expectation Maximization algorithm. J. Applied Sci. , 9: 854-864. DOI: 10. 3923/jas. 2009. 854. 864
  8. Moussaoui, A. , Y. Selaimia and H. A. Abbassi, 2006. Hybrid hot strip rolling force prediction using a Bayesian trained artificial neural network and analytical models. Am. J. Applied Sci. , 3: 1885-1889. DOI: 10. 3844/ajassp. 2006. 1885. 1889
  9. Mazouzi, S. and M. Batouche, 2007. Range image segmentation by randomized region growing and Bayesian edge regularization. J. Comput. Sci. , 3: 310-317. DOI: 10. 3844/jcssp. 2007. 310. 317.
  10. Constantinopoulos C, Titsias M K. Bayesian feature and model selection for Gaussian mixture models. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 2006, 28(6): 1013–1018
  11. Redner R, Walker H. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 1984, 26(2): 195–239
  12. Engel A, den Broeck C P L V. Statistical Mechanics of Learning. New York: Cambridge University Press, 2001
  13. Constantinopoulos C, Likas A. Unsupervised learning of Gaussian mixtures based on variational component splitting. IEEE Transactions on Neural Networks, 2007, 18(3): 745–755
  14. Verbeek J, Vlassis N, Krose B. Efficient greedy learning of Gaussian mixture models. Neural Computation, 2003, 15(2):469–485
  15. Xu L, Jordan M I. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation, 1996, 8(1):129–151
  16. McLachlan G J, Krishnan T. The EM Algorithm and Extensions (Wiley Series in Probability and Statistics). New York: Wiley-Interscience, 2007
  17. Wallace C, Boulton D. An information measure for classification. The Computer Journal, 1968, 11(2): 185–194
  18. Wallace C S, Dowe D L. Minimum message length and Kolmogorov complexity. The Computer Journal, 1999, 42(4):270–283
  19. Figueiredo M A F, Jain A. K. Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 381–396
  20. Gelman A, Carlin J B, Stern H S, Rubin D B. Bayesian Data Analysis. 2nd ed. Texts in Statistical Science. Boca Raton: Chapman & Hall/CRC, 2003
  21. Constantinopoulos C, Titsias M K. Bayesian feature and model selection for Gaussian mixture models. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 2006, 28(6): 1013–1018
  22. Lehman, E. L. , & Casella, G. (1998). Theory of Point Estimation (2nd edition). New York, NY: Springer.
  23. Schervish, M. J. (1995). Theory of Statistics. New York: Springer.
  24. D. Blei, A. Ng, and M. Jordan, Latent Dirichlet Allocation, Journal of Machine Learning Research, 3:993-1022, (2003).
  25. Anderson, T. W. (2003) an introduction to multivariate statistical analysis, 3rd ed. John Wiley and Sons, New York
  26. J. Serra, Image Analysis and Mathematical Morphology, Vol 1. Academic Press, 1982.
  27. W. Kesheng, O. Ekow, and S. Arie, "Optimizing connected components labeling algorithms, "in SPIE Int. Symposium on Medical Imaging, San Diego, CA, USA, Feb 2005.
  28. K. Suzuki, H. Isao, and S. Noboru, "Linear-time connected-component labeling based on sequential local operations," Journal of CVIU, vol. 89,pp. 1–23, jan 2003.
  29. F. Chang, C. J. Chen, and C. J. Lu, "A linear-time component-labeling algorithm using contour tracing technique, "Journal of CVIU, vol. 93, pp. 206–220, feb 2004.
  30. Ma, Y. , H. Derksen, W. Hong and J. Wright, 2007. Segmentation of multivariate mixed data via lossy data coding and compression. IEEE Trans. PAMI. , 29: 1546-1562. DOI: 10. 1109/TPAMI. 2007. 1085
  31. Mignotte, M. , 2008. Segmentation by fusion of histogram based k-means clusters in different color spaces. IEEE Trans. Image Process. 17: 780-787. DOI: 10. 1109/TIP. 2008. 920761
Index Terms

Computer Science
Information Sciences

Keywords

Gmm Em Mml Dnw Multinomial Distribution Bayesian Fisher Information