CFP last date
20 January 2025
Reseach Article

Computational Technique of 3D Reconstruction in Integral Imaging using FPGA Hardware

by A. Hussein, S. Kishk, M. Abo-elsoud
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 44 - Number 3
Year of Publication: 2012
Authors: A. Hussein, S. Kishk, M. Abo-elsoud
10.5120/6246-8235

A. Hussein, S. Kishk, M. Abo-elsoud . Computational Technique of 3D Reconstruction in Integral Imaging using FPGA Hardware. International Journal of Computer Applications. 44, 3 ( April 2012), 36-40. DOI=10.5120/6246-8235

@article{ 10.5120/6246-8235,
author = { A. Hussein, S. Kishk, M. Abo-elsoud },
title = { Computational Technique of 3D Reconstruction in Integral Imaging using FPGA Hardware },
journal = { International Journal of Computer Applications },
issue_date = { April 2012 },
volume = { 44 },
number = { 3 },
month = { April },
year = { 2012 },
issn = { 0975-8887 },
pages = { 36-40 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume44/number3/6246-8235/ },
doi = { 10.5120/6246-8235 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:34:37.674334+05:30
%A A. Hussein
%A S. Kishk
%A M. Abo-elsoud
%T Computational Technique of 3D Reconstruction in Integral Imaging using FPGA Hardware
%J International Journal of Computer Applications
%@ 0975-8887
%V 44
%N 3
%P 36-40
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper presents hardware implementation for a computational 3D integral imaging reconstruction technique. The reconstruction technique is based on a single pixel extraction from corresponding elemental images of a 3D scene, which is formed using an integral imaging system. The proposed hardware exploits both of the parallel processing and memory organization features that is available in field-programmable gate array (FPGA) device to achieve several computational operations at real time. In this method the need for optical equipment such as micro-optics lens and special high-quality LCD to display 3D scene, which will make it suitable to field view TV application, is eliminated. Some experiments were carried out to show the feasibility of the proposed scheme, its result exposes that the hardware is able to process digital reconstruction at real time rate with low power consumption.

References
  1. G. Lippmann," La Photographie integrale," C. R. Acad. Sci. 146 (1908) 446–455.
  2. H. -E. Ives, Optical properties of a Lippman lenticulated sheet, J. Opt. Soc. Am. 21(1931) 171-176.
  3. G. Saavedra, R. Martínez-Cuenca, M. Martínez-Corral, H. Navarro, M. Daneshpanah, B. Javidi, Digital slicing of 3D scenes by Fourier filtering of integral images, Opt. Express 16 (2008) 17154–17160.
  4. B. -G. Lee, Liliana, D. -H. Shin, Enhanced computational integral imaging system for partially occluded 3D objects using occlusion removal technique and recursive PCA reconstruction, Opt. Commun. 283(2010) 2084-2091.
  5. D. Chaikalis, G. Passalis, N. Sgouros, D. Maroulis, T. Theoharis, Near Real-Time 3D Reconstruction from InIm Video Stream, Springer-Verlag Berlin Heidelberg. 5112(2008) 336–347.
  6. S. -H. Hong, J. -S. Jang, B. Javidi, Three-dimensional volumetric object reconstruction using computational integral imaging, Opt. Express. 12 (2004) 483-491.
  7. H. Arimoto, Integral three-dimensional imaging with digital reconstruction, Opt. Lett. 26 (2001) 157-159.
  8. J. -S. Park, D. -C. Hwang, D. -H. Shin, E. -S. Kim, Resolution-enhanced 3D image correlator using computationally reconstructed integral images, Opt. Commun. 276 (2007) 72–79.
  9. D. -C. Hwang, K. -J. Lee, S. -C. Kim, E. -S. Kim, Extraction of location coordinates of 3-D objects from computationally reconstructed integral images basing on a blur metric, Opt. Express. 16 (2008) 3623- 3635.
  10. S. Kishk, B. Javidi, Improved Resolution 3D Object Sensing and Recognition using Time Multiplexed Computational Integral Imaging, Opt. Express. 11(2003) 3528–3541.
  11. Y. Frauel, B. Javidi, Digital three-dimensional image correlation by use of computer-reconstructed integral imaging, Appl. Opt. 41 (2002) 5488–5496.
  12. Y. Frauel, B. Javidi, Digital three-dimensional image correlation by use of computer-reconstructed integral imaging, Appl. Opt. 41 (2002) 5488–5496.
  13. D. Chaikalis , N. -P. Sgouros, D. Maroulis, A real-time FPGA architecture for 3D reconstruction from integral images, J. Vis. Commun. Image R. 21 (2010) 9–16.
  14. D. -H. Shin, M. Cho, K. -C. Park, E. -S. Kim, Computational technique of volumetric object reconstruction in integral imaging by use of real and virtual image fields, ETRI J. 27(2005) 208-712.
  15. T. Naemura, T. Yoshida, H. Harashima, 3-D computer graphics based on integral photography, Opt. Express. 8 (2001) 255-262.
  16. D. -H. Shin, B. Lee, E. -S. Kim, Improved Viewing Quality of 3-D Images in Computational Integral Imaging Reconstruction Based on Lenslet Array Model, ETRI J. 18 (2006) 521-524.
  17. Pong P. Chu, FPGA Prototyping by VHDL Examples, John Wiley & Sons (2008).
  18. P. Pawel. Czapski, A. Sluzek, Power Optimization Techniques in FPGA Devices: A Combination of System- And Low Levels, World Academy of Science, Engineering and Technology. 28 (2007) 313-319.
  19. E. Todorovich, E. Boemo, F. Angarita, J. Vails, Statistical Power Estimation for FPGA'S, IEEE. 2 (2005) 515-518.
  20. L. Shang, A. S. Kaviani, K Bathala, Dynamic Power Consumption in Virtex™-II FPGA Family, ACM/SIGDA tenth international symposium on Field-programmable gate arrays. (2002) 157-164.
  21. L. Shang, A. S. Kaviani, and K Bathala, "Dynamic Power Consumption in Virtex™-II FPGA Family," ACM/SIGDA tenth international symposium on Field-programmable gate arrays. (2002) 157-164.
  22. Xilinx Inc. , "Chapter 11: XPower". In Development System Reference Guide, available at http://www. xilinx. com.
Index Terms

Computer Science
Information Sciences

Keywords

Integral Image Three-dimensional Ciir Oiir Image Reconstruction Fpga Power Consumption