CFP last date
20 January 2025
Reseach Article

Conditional Resolving Parameters on Enhanced Hypercube Networks

by Bharati Rajan, Albert William, Indra Rajasingh, S. Prabhu
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 43 - Number 24
Year of Publication: 2012
Authors: Bharati Rajan, Albert William, Indra Rajasingh, S. Prabhu
10.5120/6434-8808

Bharati Rajan, Albert William, Indra Rajasingh, S. Prabhu . Conditional Resolving Parameters on Enhanced Hypercube Networks. International Journal of Computer Applications. 43, 24 ( April 2012), 1-5. DOI=10.5120/6434-8808

@article{ 10.5120/6434-8808,
author = { Bharati Rajan, Albert William, Indra Rajasingh, S. Prabhu },
title = { Conditional Resolving Parameters on Enhanced Hypercube Networks },
journal = { International Journal of Computer Applications },
issue_date = { April 2012 },
volume = { 43 },
number = { 24 },
month = { April },
year = { 2012 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume43/number24/6434-8808/ },
doi = { 10.5120/6434-8808 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:34:09.778947+05:30
%A Bharati Rajan
%A Albert William
%A Indra Rajasingh
%A S. Prabhu
%T Conditional Resolving Parameters on Enhanced Hypercube Networks
%J International Journal of Computer Applications
%@ 0975-8887
%V 43
%N 24
%P 1-5
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Given a graph G = (V,E), a set W ? V is a resolving set if for each pair of distinct vertices u, v ? V (G) there is a vertex w ? W such that d(u,w) 6= d(v,w). A resolving set containing a minimum number of vertices is called a minimum resolving set or a basis for G. The cardinality of a minimum resolving set is called the dimension of G and is denoted by dim(G). A resolving set W is said to be a one size resolving set if the size of the subgraph induced by W is one, and a onefactor resolving set if W induces isolated edges (one regular graph). The minimum cardinality of these sets denoted or(G) and onef(G) are called one size and one factor resolving numbers respectively. In this paper we investigate these resolving parameters for enhanced hypercube networks.

References
  1. Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall , M. Hoffman, M. Mihal´ak, Network discovery and verification, IEEE Journal on selected areas in communications, Vol. 24, no. 12 (2006) 2168- 2181.
  2. G. Chartrand, L. Eroh, M A. Johnson, O. R. Oellermann, Resolvability in Graphs and the Metric Dimension of a Graph, Discrete Appl. Math. , Vol. 105 (2000) 99-113.
  3. S. A. Chodum, V. Sunitha, Augmented Cubes, Networks, Vol. 40, no. 2 (2002) 71-84.
  4. M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NPCompleteness, Freeman, New York, 1979.
  5. F. Harary, R. A. Melter, On the Metric Dimension of a Graph, Ars Combin. , Vol. 2 (1976) 191-195.
  6. L. Hongmei, The Structural Features of Enhanced Hypercube Networks, Fifth International Conference on Natural Computation, Vol. 1 (2009) 345- 348.
  7. M. A. Johnson, Structure-Activity Maps for Visualizing the Graph Variables Arising in Drug Design, J. Biopharm. Statist. , Vol. 3 (1993) 203-236.
  8. S. Khuller, B. Ragavachari, A. Rosenfield, Landmarks in Graphs, Discrete Appl. Math. , Vol. 70, no. 3 (1996) 217-229.
  9. S. Kwancharone, V. Saenpholphat, C. M. Da Fonseca, One size resolvability of graphs, Pr´e- Publica¸c˜oes do Departmento de Matem´atica, Universidade de Coimbra, (Preprint).
  10. K. Liu, N. Abu-Ghazaleh, Virtual Coordinate Backtracking for Void Traversal in Geographic Routing, Networking and Internet Architecture, 2006.
  11. P. Manuel, B. Rajan, I. Rajasingh, M. Chris Monica, Landmarks in Torus Networks, Journal of Discrete Mathematical Sciences & Cryptography, Vol. 9, no. 2 (2006) 263-271.
  12. P. Manuel, M. I. Abd-El-Barr, I. Rajasingh, B. Rajan, An Efficient Representation of Benes Networks and its Applications, Journal of Discrete Algorithms, Vol. 6, no. 1 (2008) 11-19.
  13. P. Manuel, B. Rajan, I. Rajasingh, M. Chris Monica, On Minimum Metric Dimension of Honeycomb Networks, Journal of Discrete Algorithms, Vol. 6, no. 1 (2008) 20-27.
  14. B. Rajan, I. Rajasingh, J. A. Cynthia , P. Manuel, On Minimum Metric Dimension, Proceedings of the Indonesia-Japan Conference on Combinatorial Geometry and Graph Theory, September 13-16, 2003, Bandung, Indonesia.
  15. B. Rajan, I. Rajasingh, M. Chris Monica, P. Manuel, Metric Dimension of Enhanced Hypercube Networks, The Journal of Combinatorial Mathematics and Combinatorial Computation, Vol. 67 (2008) 5-15.
  16. B. Rajan, S. K. Thomas, M. Chris Monica, Conditional Resolvability of Honeycomb and Hexagonal Networks, Mathematics in Computer Science, Vol. 5, no. 1 (2011) 89-99.
  17. Bharati Rajan, Sonia K. Thomas and Chris Monica M, One-factor Resolvability of Grid derived Networks, Journal of Combinatorial Mathematics and Combinatorial Computing, Vol. 79, (2011) 77- 89.
  18. B. Rajan, I. Rajasingh, P. Venugopal, M. Chris Monica, Minimum Metric Dimension of Illiac Networks, Ars Combin. , (Accepted).
  19. V. Saenpholphat, P. Zhang, Conditional Resolvability of Graphs: A Survey, IJMMS, Vol. 38 (2003) 1997-2017.
  20. A. Seb¨o, E. Tannier, On Metric Generators of Graphs, Mathematics of Operational Research, Vol. 29, no. 2 (2004) 383-393.
  21. P. J. Slater, Leaves of Trees, Congress. Numer. , Vol. 14 (1975) 549-559.
  22. P. J. Slater, Dominating and Reference Sets in a Graph, J. Math. Phys. Sci. Vol. 22, no. 14 (1988) 445-455.
  23. S. S¨oderberg, H. S. Shapiro, A Combinatory Detection Problem, Amer. Math. Monthly, Vol. 70 (1963) 1066-1070.
  24. N. F. Tzeng, S. Wei. , Enhanced Hypercubes, IEEE Transactions on computers. , Vol. 40, no. 3 (1991) 284-294.
  25. J. Xu, Topological Structures and Analysis of Interconnection Networks, Kluwer Academic Publishers, 2001.
Index Terms

Computer Science
Information Sciences

Keywords

Resolving Set Basis One Size Resolving Set One Factor Resolving Set Enhanced Hypercube Networks