CFP last date
20 December 2024
Reseach Article

Anti Fuzzy T - Ideals Of TM- Algebras And Its Lower Level Cuts

by T.ramachandran, T.priya, M.parimala
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 43 - Number 22
Year of Publication: 2012
Authors: T.ramachandran, T.priya, M.parimala
10.5120/6402-8392

T.ramachandran, T.priya, M.parimala . Anti Fuzzy T - Ideals Of TM- Algebras And Its Lower Level Cuts. International Journal of Computer Applications. 43, 22 ( April 2012), 17-22. DOI=10.5120/6402-8392

@article{ 10.5120/6402-8392,
author = { T.ramachandran, T.priya, M.parimala },
title = { Anti Fuzzy T - Ideals Of TM- Algebras And Its Lower Level Cuts },
journal = { International Journal of Computer Applications },
issue_date = { April 2012 },
volume = { 43 },
number = { 22 },
month = { April },
year = { 2012 },
issn = { 0975-8887 },
pages = { 17-22 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume43/number22/6402-8392/ },
doi = { 10.5120/6402-8392 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:33:59.042953+05:30
%A T.ramachandran
%A T.priya
%A M.parimala
%T Anti Fuzzy T - Ideals Of TM- Algebras And Its Lower Level Cuts
%J International Journal of Computer Applications
%@ 0975-8887
%V 43
%N 22
%P 17-22
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we introduce the concept of Anti fuzzy T-ideals of TM-algebras, lower level cuts of a fuzzy set, lower level T-ideal and prove some results . We show that a fuzzy subset of a TM-algebra is a T-ideal if and only if the complement of this fuzzy subset is an anti fuzzy T-ideal. Also we discussed few results of T-ideal of TM-algebra under homomorphism as well as anti homomorphism . Cartesian product of Anti fuzzy T-ideal also discussed.

References
  1. Ahn S. S and H. D. Lee , Fuzzy subalgebras of BG-algebras, Commun. korean math Soc. 19 (2004) 243-251.
  2. Biswas. R , Fuzzy subgroups and Anti Fuzzy subgroups , Fuzzy sets and systems , 35 (1990),121-124.
  3. Dudek W. A and Y. B. Jun, Fuzzification of ideals in BCC-algebras , Glasnik Matematicki,36 ,(2001) , 127-138.
  4. Hu Q. P. and X. Li , On BCH-algebras, Mathematics Seminar notes 11 (1983) , 313-320.
  5. Iseki . K and S. Tanaka , An introduction to the theory of BCK – algebras , Math Japonica 23 (1978), 1- 20 .
  6. Iseki . K , On BCI-algebras , Math. Seminar Notes 8 (1980), 125-130.
  7. Megalai . K and A. Tamilarasi , classification of TM-algebra , IJCA Special issue on "Computer Aided Soft Computing Techniques for Imaging and Biomedical Applications " CASCT, 2010.
  8. Megalai . K and A. Tamilarasi , Fuzzy Subalgebras and Fuzzy T- ideals in TM-algebra ,Journal of Mathematics and Statistics 7(2) , 2011, 107-111.
  9. Muthuraj . R , P. M. Sitharselvam , M. S. Muthuraman , Anti Q fuzzy group and its lower level subgroups, IJCA, 3 (2010) ,16-20.
  10. Muthuraj . R ,M. Sridharan, P. M. Sitharselvam, M. S. Muthuraman , Anti Q- Fuzzy BG-ideals in BG-algebra, IJCA, 4 , (2010), 27-31.
  11. Neggers. J , S. S. Ahn and H. S. Kim , On Q-algebras, IJMMS 27 (2001) , 749-757.
  12. Neggers. J and H. S. Kim , On B-algebras , math,vensik,54 (2002), 21-29.
  13. Neggers. J and H. S. Kim , On d-algebras , Math,slovaca, 49 (1999) , 19-26.
  14. Samy M. Mostafa ,Mokthar A. Abdel Naby and Osama R. Elgendy , Journal of American Sciences, 7(9) , (2011), 17-21.
  15. Zadeh. L. A. , Fuzzy sets , Inform. control,8 (1965) , 338 -353.
Index Terms

Computer Science
Information Sciences

Keywords

Tm-algebra Anti Fuzzy Subalgebra Fuzzy T- Ideal Anti Fuzzy T-ideal Anti Homomorphism Cartesian Product Lower Level Cuts. Ams Subject Classification (2000): 20n25 03e72 03f055 06f35 03g25