CFP last date
20 January 2025
Reseach Article

Fuzzy Risk Analysis based on a new approach of Ranking Fuzzy Numbers using Orthocenter of Centroids

by N. Ravi Shankar, Mohd Lazim Abdullah, Y.l.p. Thorani, P. Phani Bushan Rao
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 42 - Number 3
Year of Publication: 2012
Authors: N. Ravi Shankar, Mohd Lazim Abdullah, Y.l.p. Thorani, P. Phani Bushan Rao
10.5120/5674-7706

N. Ravi Shankar, Mohd Lazim Abdullah, Y.l.p. Thorani, P. Phani Bushan Rao . Fuzzy Risk Analysis based on a new approach of Ranking Fuzzy Numbers using Orthocenter of Centroids. International Journal of Computer Applications. 42, 3 ( March 2012), 24-36. DOI=10.5120/5674-7706

@article{ 10.5120/5674-7706,
author = { N. Ravi Shankar, Mohd Lazim Abdullah, Y.l.p. Thorani, P. Phani Bushan Rao },
title = { Fuzzy Risk Analysis based on a new approach of Ranking Fuzzy Numbers using Orthocenter of Centroids },
journal = { International Journal of Computer Applications },
issue_date = { March 2012 },
volume = { 42 },
number = { 3 },
month = { March },
year = { 2012 },
issn = { 0975-8887 },
pages = { 24-36 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume42/number3/5674-7706/ },
doi = { 10.5120/5674-7706 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:30:32.979157+05:30
%A N. Ravi Shankar
%A Mohd Lazim Abdullah
%A Y.l.p. Thorani
%A P. Phani Bushan Rao
%T Fuzzy Risk Analysis based on a new approach of Ranking Fuzzy Numbers using Orthocenter of Centroids
%J International Journal of Computer Applications
%@ 0975-8887
%V 42
%N 3
%P 24-36
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, a new approach of ranking fuzzy numbers using orthocenter of centroids of fuzzy numbers to its distance from original point is proposed. The proposed method can rank all types of fuzzy numbers including crisp numbers with different membership functions. We apply the proposed ranking method to develop a new method to deal with fuzzy risk analysis problems. The proposed method is more flexible than the existing methods.

References
  1. L. A. Zadeh, Fuzzy sets, Information and control 8 (1965) 338-353.
  2. R. Jain, Decision making in the presence of fuzzy variables, IEEE Trans. on Sys. , Man and Cybernetics 6 (1976) 698-703.
  3. S. M. Bass, H. Kwakernaak, Rating and ranking of multiple-aspect alternatives using Fuzzy sets, Automatica 13 (1977) 47-58.
  4. R. Jain, A procedure for multi aspect decision making using fuzzy sets. Int. J. Syst. Sci. 8 (1978) 1-7.
  5. J. F. Baldwin, N. C. F Guild, Comparison of fuzzy sets on the same decision space,Fuzzy Sets and Systems 2 (1979) 213-233.
  6. R. R. Yager, On choosing between fuzzy subsets, Kybernetes 9 (1980) 151-154.
  7. J. M. Adamo, Fuzzy decision trees, Fuzzy Sets and Systems 4 (1980) 207-219
  8. R. R. Yager, A procedure for ordering fuzzy subsets of the unit interval, Information Sciences 24 (1981) 143-161.
  9. 9. W. Chang, Ranking of fuzzy utilities with triangular membership functions, Proceedings of International Conference on Policy Analysis and Systems, 1981, pp. 263-272.
  10. E. Kerre, The use of fuzzy set theory in electrocardiological diagnostics, in: M. M. Gupta, E. Sanchez (Eds. ), Approximate Reasoning in Decision-Analysis, North- Holland, Amsterdam, 1982, pp. 277-282.
  11. D. Dubois and H. Prade, Ranking fuzzy numbers in the setting of possibility theory, Information Sciences 30 (1983) 183-224.
  12. G. Bortolan, R. Degani, A review of some methods for ranking fuzzy subsets, Fuzzy Sets and Systems 15 (1985) 1-19.
  13. S. -H. Chen, Ranking fuzzy numbers with maximizing set and minimizing set, Fuzzy Sets and Systems 17 (1985) 113-129.
  14. W. Kolodziejczyk, Orlovsky, Concept of decision-making with fuzzy preference relation – Further results, Fuzzy Sets and Systems 19 (1986) 11-20.
  15. K. Nakamura, Preference relations on a set of fuzzy utilities as a basis for decision making. Fuzzy Sets and Systems 20 (1986) 147-162.
  16. D. Dubois, H. Prade, The mean value of a fuzzy number, Fuzzy Sets and Systems 2 (1987) 279-300.
  17. X. Wang, A class of approaches to ordering alternatives, MSc Thesis, Taiyuan University Technology, 1987 (in Chinese).
  18. E. S. Lee, R. -J. Li, Comparison of fuzzy numbers based on the probability measure of fuzzy events, Comput. Math. Applic. 15(10) (1988) 887-896.
  19. M. Delgado, J. L. Verdegay, M. A. Vila, A procedure for ranking fuzzy numbers, Fuzzy Sets and Systems 26 (1988) 49-62.
  20. L. Campos, A. Munoz, A subjective approach for ranking fuzzy numbers, Fuzzy Sets and Systems 29 (1989) 145-153.
  21. K. Kim, K. S. Park, Ranking fuzzy numbers with index of optimism, Fuzzy Sets and Systems 35 (1990) 143-150.
  22. Y. Yuan, Criteria for evaluating fuzzy ranking methods, Fuzzy Sets and Systems 44 (1991) 139-157.
  23. S. Heilpern, The expected value of a fuzzy number, Fuzzy Sets and Systems 47 (1992) 81-86.
  24. J. J. Saade, H. Schwarzlander, Ordering fuzzy sets over the real line: An approach based on decision making under uncertainty, Fuzzy Sets and Systems 50 (1992) 237-246.
  25. T. S. Liou, M. - J. Wang, Ranking fuzzy numbers with integral value, Fuzzy Sets and Systems 50 (1992) 247-255.
  26. F. Choobineh H. Li, An index for ordering fuzzy numbers, Fuzzy Sets and Systems 54 (1993) 287-294.
  27. P. Fortemps, M. Roubens, Ranking and defuzzification methods based on area compensation, Fuzzy Sets and Systems 82 (1996) 319-330.
  28. C. H. Cheng, A new approach for ranking fuzzy numbers by distance method, Fuzzy Sets and Systems 95 (1998) 307-317.
  29. J. –S. Yao. K. Wu, Ranking fuzzy numbers based on decomposition principle and signed distance, Fuzzy Sets and Systems 116 (2000) 275-288.
  30. X. Wang, E. E. Kerre, Reasonable properties for the ordering of fuzzy quantities (I), Fuzzy Sets and Systems 118 (2001) 375-385.
  31. X. Wang, E. E. Kerre, Reasonable properties for the ordering of fuzzy quantities (II), Fuzzy Sets and Systems 118 (2001) 387-405.
  32. M. Modarres, S. S. -Nezhad, Ranking fuzzy numbers by preference ratio, Fuzzy Sets and Systems 118 (2001) 429-436.
  33. L. -H. Chen, H. -W. Lu, An approximate approach for ranking fuzzy numbers based on left and right dominance, Computers and Mathematics with Applications 41 (2001) 1589-1602.
  34. T. -C. Chu, C. - T. Tsao, Ranking fuzzy numbers with an area between the Centroid point and original point, Computers and Mathematics with Applications 43 (2002) 111- 117.
  35. Y. - M. Wang, J. - B. Yang, D. - L. Xu, K. - S. Chin, On the centroids of fuzzy numbers, Fuzzy Sets and Systems 157 (2006) 919-926.
  36. S. Abbasbandy, B. Asady, Ranking of fuzzy numbers by sign distance, Information Sciences 176 (2006) 2405-2416.
  37. B. Asady, A. Zendehnam, Ranking fuzzy numbers by distance minimization, Applied Mathematical Modelling 31 (2007) 2589-2598.
  38. M. S. Garcia, M. T. Lamata, A modification of the index of liou and wang for ranking fuzzy number, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 15 (4) (2007) 411-424.
  39. Y. -J. Wang, H. -S. Lee, The revised method of ranking fuzzy numbers with an area between the centroid and original points, Computers and Mathematics with Applications 55 (2008) 2033-2042.
  40. C. -C. Chen, H. -C. Tang, Ranking nonnormal p-norm trapezoidal fuzzy numbers with integral value, Computers and Mathematics with Applications 56 (2008) 2340-2346.
  41. S. H. Chen, Operations on fuzzy numbers with function principal, Tamkang J. Manag. Sci. , Vol. 6, no. 1, pp. 13-25, 1985.
  42. 42. Kaufmann, A. and Gupta, M. M. (1985), Introduction to Fuzzy arithmetics : Theory and applications, Van Nostrand Reinhold, New York.
  43. 43 C-H. Hsieh, S-H Chen, A model and algorithm of fuzzy product positioning; Information Sciences , vol. 121 , no. 12, pp. 61-82,1999.
Index Terms

Computer Science
Information Sciences

Keywords

Ranking Fuzzy Numbers Centroid Orthocenter Fuzzy Ranking Fuzzy Risk Analysis