CFP last date
20 January 2025
Reseach Article

Semi-compatibility in Non-Archimedean Fuzzy Metric spaces

by Seema Mehra, Renu Chugh
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 41 - Number 8
Year of Publication: 2012
Authors: Seema Mehra, Renu Chugh
10.5120/5560-7635

Seema Mehra, Renu Chugh . Semi-compatibility in Non-Archimedean Fuzzy Metric spaces. International Journal of Computer Applications. 41, 8 ( March 2012), 12-17. DOI=10.5120/5560-7635

@article{ 10.5120/5560-7635,
author = { Seema Mehra, Renu Chugh },
title = { Semi-compatibility in Non-Archimedean Fuzzy Metric spaces },
journal = { International Journal of Computer Applications },
issue_date = { March 2012 },
volume = { 41 },
number = { 8 },
month = { March },
year = { 2012 },
issn = { 0975-8887 },
pages = { 12-17 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume41/number8/5560-7635/ },
doi = { 10.5120/5560-7635 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:29:03.753648+05:30
%A Seema Mehra
%A Renu Chugh
%T Semi-compatibility in Non-Archimedean Fuzzy Metric spaces
%J International Journal of Computer Applications
%@ 0975-8887
%V 41
%N 8
%P 12-17
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The purpose of this paper is to prove a common fixed point theorem for six self maps using the concept of semi-compatibility and weak compatibility of pair of self maps in Non- Archimedean fuzzy metric space.

References
  1. A. George and P. Veeramani, 1994. On some results in fuzzy metric space, Fuzzy Sets and Systems, vol. 64, 395-399.
  2. B. Schweizer, H. Sherwood, and R. M. Tardi®,1988. Contractions on PMspace examples and counter examples, Stochastica vol. 1, 5–17.
  3. D. Mihet, 2004. A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, vol. 144, 431–439.
  4. D. Mihet, 2008. Fuzzy -contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems vol. 159, 739 – 744.
  5. G. L. Cain Jr. and R. H. Kasreil, 1976. Fixed and periodic points of local contraction mappings on probabilistic metric spaces, Math. Systems Theory, vol. 9, 289-297.
  6. I. Kramosil and J. Michalek, 1975. Fuzzy metric and statistical metric spaces, Kybernetica, vol. 11, 326-334.
  7. I. Istratescu, 1985. On some fixed point theorems for mappings on non-Archimedean probabilistic metric spaces, Seminarual de Teoria probabilistic tatiler si. applicatii. ,vol. 73, 1-11.
  8. L. A. Zadeh, 1965. Fuzzy Sets, Information and Control, vol. 8, 338-353.
  9. L. A. Zadeh, 1969. Biological application of the theory of fuzzy sets and systems, in: Proc. Int. Symp. Biocybernetics of the Central Nerous System (Little, Brown & Co. , Boston) 199–212.
  10. M. S. El Naschie, 1998. On the uncertainty of Cantorian geometry and two-slit experiment,Chaos, Solitons and Fractals vol. 9, 517–529.
  11. M. S. El Naschie, 2004. A review of E-infinity theory and the mass spectrum of high energy particle physics, Chaos, Solitons and Fractals vol. 19, 209–236.
  12. M. S. El Naschie, 2005. On a fuzzy Kahler-like Manifold which is consistent with two-slit experiment, Int. J. of Nonlinear Science and Numerical Simulation, vol. 6, 95–98.
  13. V. Gregori and A. Sapena, 2002. On fixed-point theorem in fuzzy metric spaces, Fuzzy Sets and Systems, vol. 125, 245–252.
  14. Y. Tanaka, Y. Mizno, and T. Kado, 2005. Chaotic dynamics in Friedmann equation, Chaos, Solitons and Fractals vol. 24, 407–422.
  15. S. S. Chang, 1985. On the theory of probabilistic metric spaces with applications, Acta Math. Sinica, New Series, vol. 1, issue 4, 366-377.
  16. S. S. Chang, 1983. Fixed point theorems for generalized Meir-Keeler Type mappings, J. Sichuan Univ. , Natural Sci. Edition, vol. 2, 17-23.
Index Terms

Computer Science
Information Sciences

Keywords

Semicompatible And Weakly Compatible Mappings Non-archimedean Fuzzy Metric Spaces