We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Arrhythmia ECG Signal Analysis using Non Parametric Time-Frequency Techniques

by A. Dliou, R. Latif, M. Laaboubi, F. M. R. Maoulainine
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 41 - Number 4
Year of Publication: 2012
Authors: A. Dliou, R. Latif, M. Laaboubi, F. M. R. Maoulainine
10.5120/5530-7574

A. Dliou, R. Latif, M. Laaboubi, F. M. R. Maoulainine . Arrhythmia ECG Signal Analysis using Non Parametric Time-Frequency Techniques. International Journal of Computer Applications. 41, 4 ( March 2012), 25-30. DOI=10.5120/5530-7574

@article{ 10.5120/5530-7574,
author = { A. Dliou, R. Latif, M. Laaboubi, F. M. R. Maoulainine },
title = { Arrhythmia ECG Signal Analysis using Non Parametric Time-Frequency Techniques },
journal = { International Journal of Computer Applications },
issue_date = { March 2012 },
volume = { 41 },
number = { 4 },
month = { March },
year = { 2012 },
issn = { 0975-8887 },
pages = { 25-30 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume41/number4/5530-7574/ },
doi = { 10.5120/5530-7574 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:28:46.079316+05:30
%A A. Dliou
%A R. Latif
%A M. Laaboubi
%A F. M. R. Maoulainine
%T Arrhythmia ECG Signal Analysis using Non Parametric Time-Frequency Techniques
%J International Journal of Computer Applications
%@ 0975-8887
%V 41
%N 4
%P 25-30
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Non-parametric time-frequency analysis for multicomponent nonstationary signals is an important issue in signal processing, especially in the biomedical field. Due to the nonstationary, multicomponent nature of the biomedical ECG signal, the use of time-frequency analysis can be very useful to identify the exact multicomponent structure of this biological signal. In this paper, three time-frequency techniques are applied for analyzing a supraventricular ECG signal. These three time-frequency techniques are the Choi–Williams distribution, the Bessel distribution and the Born-Jordan distribution. Their performance over supraventricular ECG signal as well as over a monocomponent frequency modulation signal in additive Gaussian noise was compared. The results showed that the Choi–Williams technique gives a good performance as compared to other time-frequency techniques.

References
  1. Shirley A. Jones 2008 ECG Success Exercises in ECG Interpretation, by F. A. Davis Company.
  2. Clifford Gari D. , Azuaje Francisco, McSharry Patrick E. 2006. Advanced Methods and Tools for ECG Data Analysis, ARTECH HOUSE, INC.
  3. Shade Bruce 2008 Pocket ECGs : A Quick Information Guide, by The McGraw-Hill Companies.
  4. Rowlands Angela and Sargent Andrew 2011 The ECG Workbook 2nd edition, M&K Publishing.
  5. Bigan C. , Woolfson M. S. 2000. Time-frequency analysis of short segments of biomedical data, IEEE Proc. -Sci. Meas. Technol. 147 (6) 368–373.
  6. Clayton R. H. , Murray A. (Sept. 1993. Estimation of the ECG signal spectrum during ventricular ?brillation using the fast Fourier transform and maximum entropy methods, Proceedings of the Computers in Cardiology, pp. 867 - 870.
  7. Cooley J. W. and Tukey J. W. 1965. An algorithm for machine calculation of complex Fourier series, Math. Comput. 19, 297–301.
  8. Chen. Z. , Senior Member, IEEE, and Urwin P. 2001. Power Quality Detection and Classification Using Digital Filters, IEEE Porto Power Tech Conference 10" L13" September, Porto, Portugal.
  9. Wood J. C. , Barry D. T. Sept. 1996. Time-frequency analysis of skeletal muscle and cardiac vibrations, Proceedings of the IEEE, vol. 84, issue 9, pp. 1281-1294.
  10. World Hearth Organization, The Atlas of Heart Disease and Stroke, http://www. who. int/ cardiovascular_diseases/resources/atlas/en/.
  11. Cohen L. 1989. Time-frequency distributions-a review, Proc. IEEE 77 (7) 941–981.
  12. Cohen L. 1995. Time-Frequency Analysis, Prentice Hall PTR, Englewood Cliffs, New Jersey.
  13. Mousa Allam and Saleem Rashid 2011 Using reduced interference distribution to analyze abnormal cardiac signal, Journal of ELECTRICAL ENGINEERING, VOL. 62, NO. 3, 168–172.
  14. Hassanpour H, Mesbah M and Boashash B. 2004. EEG spike detection using time-frequency analysis. ICASSP. 5, 421-424.
  15. Al-Manie Mohammed A. 2010. Deconvolution methods for biomedical signals analysis, Indian Journal of Science and Technology, Vol. 3 No. 2.
  16. Boashash B. 2003. Time-Frequency Signal Analysis and Processing: A Comprehensive Reference, Elsevier, Oxford, UK.
  17. Latif R. , Aassif E. , Moudden A. , Faiz B. 2003. High resolution time-frequency analysis of an acoustic signal backscattered by a cylindrical shell using a Modified Wigner-Ville representation, Meas. Sci. Technol. 14, pp. 1063-1067.
  18. Latif R. , Aassif E. , Maze G. , Decultot D. , Moudden A. , Faiz B. 2000. Analysis of the circumferential acoustic waves backscattered by a tube using the time-frequency representation of Wigner-Ville, Journal of Measurement Science and Technology, Vol. 11, 1, pp. 83-88.
  19. Latif R. , Laaboubi M. , Aassif E. , Maze G. 2009. Détermination de l'épaisseur d'un tube élastique à partir de l'analyse temps-fréquence de Wigner-Ville, Journal Acta-Acustica, Vol 95, Number 5, pp 843-848.
  20. Hussain Z. M. and Boashash B. 2002. Adaptive instantaneous frequency estimation of multi-component FM signals using quadratic time-frequency distributions, IEEE Transactions on Signal Processing, vol. 50, no. 8, pp. 1866 -1876.
  21. Addison Paul S. 2005. Wavelet transforms and the ECG: a review, Physiol. Meas. 26 R155–R199.
  22. Flandrin P. 1998. Time-Frequency/Time-Scale Analysis, Academic Press, Boston, MA.
  23. Hussain Z. M. , Boashash B. 2003. IF estimation for multicomponent signals, in: Time-Frequency Signal Analysis and Processing: A Comprehensive Reference, Elsevier, Oxford, UK, pp. 437–445.
  24. Boashash B. 1991. Time-frequency signal analysis In: Advances in Spectrum Estimation (S. Haykin: editor). Prentice-Hall, NJ.
  25. Choi H. , Williams W. 1989. Improved time-frequency representation of multicomponent signals using exponential kernels, IEEE Trans. Signal Process. 37 (6) 862–871.
  26. Hlawatsch, F. , Manickam T. G. , Urbanke R. L, and Jones W. 1995. Smoothed pseudo-Wigner distribution, Choi-Williams distribution, and cone-kernel representation: Ambiguity-domain analysis and experimental comparison, Signal Processing, vol. 43 (2), pp. 149-168.
  27. Cohen L. 1966. Generalized Phase-Space Distribution Functions, J. Math. Phys. , Vol. 7, No. 5, pp. 781-786.
  28. Thayaparan T. and Kennedy S. February 2004. Detection of a manoeuvring air target in sea-clutter using joint time-frequency analysis techniques. In IEEE Proceedings - Radar, Sonar and Navigation, Vol. 151, pages 19-30.
  29. Guo Z. , Durand L. G. , Lee H. C. 1994. The Time-Frequency Distributions of Nonstationary Signals Based on a Bessel Kernel, IEEE Trans. on Signal Proc. , vol 42, pp. 1700-1707.
  30. Jeong J. , Williams W. 1992. Kernel design for reduced interference distributions, IEEE Trans. Signal Processing, 40 No. 2, 402–412.
  31. Hebbar A. K. , Hueston W. J. 2002. Management of Common Arrhythmias: Part I. Supraven-tricular Arrhythmias, J. Am. Family Physician 65 (12) 2479–2486.
  32. Hebbar A. K. , Hueston W. J. 2002. Management of common arrhythmias: Part II. Ventricular arrhythmias and arrhythmias in special populations, J. Am. Family Physician 65 (12) 2491–2496.
  33. Physiobank, Physionet viewed August 2005 Physiologic signal archives for biomedical research, http://www. physionet. org/physiobank/.
Index Terms

Computer Science
Information Sciences

Keywords

Nonstationary Signal Time-frequency Techniques Electrocardiogram Supraventricular Arrhythmia Qrs Complex