We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Color Image Segmentation using Fuzzy Local Texture Patterns

by E. M. Srinivasan, K. Ramar, A. Suruliandi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 41 - Number 18
Year of Publication: 2012
Authors: E. M. Srinivasan, K. Ramar, A. Suruliandi
10.5120/5641-8021

E. M. Srinivasan, K. Ramar, A. Suruliandi . Color Image Segmentation using Fuzzy Local Texture Patterns. International Journal of Computer Applications. 41, 18 ( March 2012), 16-23. DOI=10.5120/5641-8021

@article{ 10.5120/5641-8021,
author = { E. M. Srinivasan, K. Ramar, A. Suruliandi },
title = { Color Image Segmentation using Fuzzy Local Texture Patterns },
journal = { International Journal of Computer Applications },
issue_date = { March 2012 },
volume = { 41 },
number = { 18 },
month = { March },
year = { 2012 },
issn = { 0975-8887 },
pages = { 16-23 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume41/number18/5641-8021/ },
doi = { 10.5120/5641-8021 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:29:56.204778+05:30
%A E. M. Srinivasan
%A K. Ramar
%A A. Suruliandi
%T Color Image Segmentation using Fuzzy Local Texture Patterns
%J International Journal of Computer Applications
%@ 0975-8887
%V 41
%N 18
%P 16-23
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Texture is one of the fundamental image characteristics useful in computer vision tasks such as object recognition and scene analysis. Texture segmentation is one of the image analysis tasks. The prospect of texture segmentation depends on the choice of the texture description method and the segmentation procedure. In this paper, color-texture descriptors are proposed to represent the texture contents of the color images. In these texture description schemes, small areas of the image are represented by fuzzy based local texture patterns and the entire image is represented by frequency occurrence of such texture patterns. Supervised segmentation of color images is performed using these color-texture descriptors and promising results are obtained.

References
  1. Muneeswaran, K. , Ganesan, L. , Arumugam, S. , and K. ,Ruba Soundar, 2006, "Texture image segmentation using combined features from spatial and spectral distribution", Pattern Recognition Letters, Vol. 27, pp. 755-764.
  2. Ojala, T. , and Pietikainen, M. , 1999, "Unsupervised texture segmentation using feature distribution", Pattern Recognition, Vol. 32, pp. 477 – 486.
  3. Raden, T. , and Husoy, J. H. , 1999, "Texture segmentation using filters with optimized energy separation", IEEE trans. Image Processing, Vol. 8, pp. 571-582.
  4. Tuceryan, M. , 1994, "Moment based texture segmentation", Pattern Recognition Letters, Vol. 15, pp. 659-668.
  5. Unser, M. , 1995, "Texture classification and segmentation using wavelet frames", IEEE Trans. Image Processing, Vol. 4, pp. 1549-1560.
  6. Chang, M. M. , Sezan, M. I. , and Tekalp, A. M. , 1994, "Adaptive Bayesian segmentation of color images", Journal of Electronic Imaging, vol. 3, pp. 404-414.
  7. Deng, Y. , and Manjunath, B. S. , 2001, "Unsupervised segmentation of color texture regions in images and video", IEEE Trans. Pattern Analysis and Machine Intlligence, vol. 23, pp. 800-810.
  8. Pappas, T. N. , 1992, "An adaptive clustering algorithm for image segmentation", IEEE trans. Signal Processing, vol. Vol. 40, pp. 901-914.
  9. Suruliandi. A. , and Ramar, K. , 2008, "Local Texture Patterns- A univariate texture model for classification of images", Proceedings of the IEEE 16th International Conference on Advanced Computing and Communications (ADCOM08), pp. 32-39. Available online at IEEE Xplore.
  10. Srinivasan, E. M. , Suruliandi, A. , and Ramar, K. , 2011, "Texture Analysis using Local Texture Patterns:A Fuzzy Logic Approach", International Journal of Pattern Recognition and Artificial Intelligence, Vol. 25, No. 5, pp. 741-751.
  11. Maenpaa, T. , and Pietikainen, M. , 2004, "Classification with color and texture: Jointly or separately?", Pattern Recognition, Vol. 37, pp. 1629-1640.
  12. Arvis, V. , Debain, C. , Berducat, M. , and Benassi, A. , 2004, "Generalization of the cooccurrence matrix for color images: Application to color texture classification", Image Anal Sterol, Vol. 23, pp. 63-72.
  13. Drimbarean, A. , and Whelan, P. , 2001, "Experiments in color texture analysis", Pattern Recognition Letters, Vol. 22, pp. 1161-1167.
  14. Palm, C. , 2007, "Color Texture Classification by integrative co-occurrence matrices", Pattern Recognition, Vol. 37, pp. 965-976.
  15. Sokal, R. R. , and Rohlf, F. J. , 1987, "Introduction to Biostatistics", 2nd Edition, W. H. Freeman.
  16. VisTex: Texture Database - http://www. vismod. media. mit. edu/vismod/imagery/ visiontexture/vistex. html.
  17. Ojala, T. , Mäenpää, T. , Pietikäinen, M. , Viertola, J. , Kyllönen, J. and Huovinen, S. , 2002, "OUTex – A new framework for empirical evaluation of texture analysis algorithms", Proceedings of the 16th International Conference on Pattern Recognition.
Index Terms

Computer Science
Information Sciences

Keywords

Texture Patterns Fuzzy Local Texture Patterns Fuzzy Pattern Spectrum Texture Segmentation