CFP last date
20 January 2025
Reseach Article

Implementations Approches of Neural Networks Lane Following System

by Klabi Imen, Afef Benjemma, Mohamed Slim Masmoudi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 40 - Number 17
Year of Publication: 2012
Authors: Klabi Imen, Afef Benjemma, Mohamed Slim Masmoudi
10.5120/5070-7220

Klabi Imen, Afef Benjemma, Mohamed Slim Masmoudi . Implementations Approches of Neural Networks Lane Following System. International Journal of Computer Applications. 40, 17 ( February 2012), 7-10. DOI=10.5120/5070-7220

@article{ 10.5120/5070-7220,
author = { Klabi Imen, Afef Benjemma, Mohamed Slim Masmoudi },
title = { Implementations Approches of Neural Networks Lane Following System },
journal = { International Journal of Computer Applications },
issue_date = { February 2012 },
volume = { 40 },
number = { 17 },
month = { February },
year = { 2012 },
issn = { 0975-8887 },
pages = { 7-10 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume40/number17/5070-7220/ },
doi = { 10.5120/5070-7220 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:28:18.903702+05:30
%A Klabi Imen
%A Afef Benjemma
%A Mohamed Slim Masmoudi
%T Implementations Approches of Neural Networks Lane Following System
%J International Journal of Computer Applications
%@ 0975-8887
%V 40
%N 17
%P 7-10
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

networks are instigating increasing interest in the fields of control and robotics. The rapidity of processing, the ability to learn and adapt as well as the robustness of these approaches, are motivating this work. To help this system be embedded in a wheelchair, it is imperative to respect the functional constraints and those of resource allocation, weights, consumption, cost... So conceiving an embedded system is ultimately an exercise in optimization: minimizing production costs for optimal functionality. The objective of this work is FPGA implementation of an optimal architecture of neuronal network.

References
  1. A. Abedenour"Outil d'analyse et de partitionnement/ ordonnancement pour les systèmes temps réel embarqués "Thèse de doctorat, l'université Bretagne sud 2004.
  2. Yeong-Chan Chang and Bor-Sen Chen “Intelligent robust tracking controls for holonomic and nonholonomic mechanical systems using only position measurements” IEEE Trans on Fuzzy System, Vol. 13, No.4, August 2005
  3. Joseba L. Arroyabe, Gerardo Aranguren, Luis A. L. Nozal, Jose L. Martin “Autonomous vehicle guidance with fuzzy algorithm” in Proceedings of IEEE International Conference I.E.C.O.N. Japan, 2000.
  4. C¸ avus¸lu MA, Karakaya F, Altun H (2008) C¸KA Tipi Yapay Sinir Ag?i Kullan?larak Plaka Yeri Tespitinin FPGA’da Donan?msal Gerc¸eklenmesi. In: Proceedings of Ak?ll? Sistemlerde Yenilikler ve Uygulamalar Sempozyumu 2008 (ASYU 2008) Isparta, Turkey (in Turkish)
  5. Wafa Makni Ben Ayed, « Implémentation de réseaux de neurones sur FPGA Appliqués à la Robotique Mobile », Mastère, Ecole Nationale d’Ingénieur à Sfax, juillet 2007.
  6. Sang-Woo Moon and Seong-Gon Kong, “Block-based neural networks” IEEE Trans Neural Networks, Vol. 12, No. 2, pp. 307-317, March 2001.
  7. Frank Elie « Conception et réalisation d’un système utilisant des réseaux de neurones pour l’identification et la caractérisation, au bord de satellites, de signaux transitoires de type sifflement », thèse de doctorat à l’université de l’Orléans, 1997, pp.101-118
  8. Florent de Dinechin, « Matériels et logiciels pour l’évaluation de fonction numériques Précision, performance et validation », mémoire d’habilitation à diriger des recherches, numéro d’ordre 22-2007, l’université Claude Bernard Lyon1.
  9. Wafa Makni Ben Ayed, « A Neural Controller for lane/wall following system», Ecole Nationale d’Ingénieur à Sfax, juillet 2008.
  10. Mehmet Ali çavuslu «Neural network training based on FPGA with floating point number format and it’s performance»,Neural Comput & Applic (2011)
Index Terms

Computer Science
Information Sciences

Keywords

Robotic Mobile neural networks FPGA sigmoid function