CFP last date
20 January 2025
Reseach Article

Data Dependence of Noor and SP Iterative Schemes when dealing with Quasi-Contractive Operators

by Renu Chugh, Vivek Kumar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 40 - Number 15
Year of Publication: 2012
Authors: Renu Chugh, Vivek Kumar
10.5120/5059-7384

Renu Chugh, Vivek Kumar . Data Dependence of Noor and SP Iterative Schemes when dealing with Quasi-Contractive Operators. International Journal of Computer Applications. 40, 15 ( February 2012), 41-46. DOI=10.5120/5059-7384

@article{ 10.5120/5059-7384,
author = { Renu Chugh, Vivek Kumar },
title = { Data Dependence of Noor and SP Iterative Schemes when dealing with Quasi-Contractive Operators },
journal = { International Journal of Computer Applications },
issue_date = { February 2012 },
volume = { 40 },
number = { 15 },
month = { February },
year = { 2012 },
issn = { 0975-8887 },
pages = { 41-46 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume40/number15/5059-7384/ },
doi = { 10.5120/5059-7384 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:28:11.520892+05:30
%A Renu Chugh
%A Vivek Kumar
%T Data Dependence of Noor and SP Iterative Schemes when dealing with Quasi-Contractive Operators
%J International Journal of Computer Applications
%@ 0975-8887
%V 40
%N 15
%P 41-46
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

We prove results concerning data dependence of Noor and SP iterative schemes using certain quasi-contractive operators in real Banach spaces. Our results reveal that by choosing an approximate quasi-contractive operator (for which it is possible to compute the fixed point); we can approximate the fixed point of the given operator. An example is also provided to explain the validity of our results.

References
  1. Berinde, V. : On the convergence of the Ishikawa iteration in the class of quasi contractive operators, Acta Mathematica Universitatis Comenianae, vol. 73, no. 1, pp. 119-126( 2004).
  2. Berinde, V.: Generalized Contractions and Applications , (Romanian), Editura Cub press 22, Baia Mare (1997).
  3. Chidume , C. E and Mutangadura, S. A. : An example of the Mann iteration method for Lipschitz pseudo-contractions, Proceedings of the American Mathematical Society, vol. 129, no. 8, pp. 2359-2363(2001).
  4. Chugh, Renu and Kumar, Vivek: Strong convergence of SP iterative scheme for quasi-contractive operators in Banach spaces, International Journal of Computer Applications, volume 31, No. 5, October (2011).
  5. Ciric, L.B., Lee, B. S. and Rafiq, A.: Faster Noor iterations, Indian Journal of Mathematics, T. Pati Memorial Volume , vol 52, no 3, 429- 436(2010).
  6. Imoru ,C. O. and Olatinwo, M. O. : On the stability of Picard and Mann iteration processes, Carpathian Journal of Mathematics, vol. 19, no. 2, pp. 155–160(2003).
  7. Ishikawa, S. : Fixed points by a new iteration method, Proceedings of the American Mathematical Society, vol. 44, no. 1, pp. 147–150 (1974).
  8. Mann, W. R. : Mean value methods in iteration, Proceedings of the American Mathematical Society, vol. 4, no. 3, pp. 506–510( 1953).
  9. Noor, M. A. : New approximation schemes for general variational inequalities, Journal of Mathematical Analysis and Applications, vol. 251, no. 1, pp. 217-229(2000).
  10. Osilike, M.O., Some Stability Results for Fixed Point Iteration Procedures. J.Nigerian Math.Soc. Volume 14/15(1995), 17-29.
  11. Olaleru, J.O and Akewe. H.: The equivalence of Jungck type iterations for generalized contractive-like operators in Banach space , Fasciculi Mathematici ,47-61(2011).
  12. Phuengrattana , Withunand , Suantai, Suthep : On the rate of convergence of Mann, Ishikawa, Noor and SP iterations for continuous functions on an arbitrary interval, Journal of Computational and Applied Mathematics, 235(2011), 3006- 3014.
  13. Park, J. A.: Mann iteration process for the fixed point of strictly pseudocontractive mapping in some Banach spaces, Journal of the Korean Mathematical Society, vol. 31, no. 3, pp. 333–337(1994).
  14. Rafiq, A.: On the convergence of the three step iteration process in the class of quasi-contractive operators, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 22, 305-309(2006).
  15. Rhoades, B.E., Fixed Point Theorems and Stability Results for Fixed Point Iteration Procedures II, Indian J. Pure Appl. Math. 24 (11) (1993), 691-703
  16. Rus, I.A. : Generalized Contractions and Applications , Cluj University Press , Cluj-Napoca(2001),3 pages.
  17. S¸oltuz, S. M.: Data dependence for Mann iteration, Octogon Math. Magazine 9 (2001), 825-828.
  18. S¸oltuz, S. M.: Data dependence for Ishikawa iteration, Lecturas Matematicas, vol. 25, no. 2, pp. 149-155, 2004.
  19. S¸oltuz , S. M.: Data dependence for Ishikawa iteration when dealing with contractive like operators., Fixed Point Theory and Applications, Volume 2008, Article Id 242916, 7 pages.
  20. Zamfirescu, T.: Fix point theorems in metric spaces, Archiv derMathematik, vol. 23, no. 1, pp. 292-298(1972).
Index Terms

Computer Science
Information Sciences

Keywords

SP iteration Noor iteration Quasi-Contractive Operators