CFP last date
20 February 2025
Reseach Article

Article:Detection of Cancer Using Vector Quantization for Segmentation

by Ms.Kavita Raut, Ms.Saylee Gharge, Dr.Tanuja Sarode, Dr. H. B. Kekre
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 4 - Number 9
Year of Publication: 2010
Authors: Ms.Kavita Raut, Ms.Saylee Gharge, Dr.Tanuja Sarode, Dr. H. B. Kekre
10.5120/856-1199

Ms.Kavita Raut, Ms.Saylee Gharge, Dr.Tanuja Sarode, Dr. H. B. Kekre . Article:Detection of Cancer Using Vector Quantization for Segmentation. International Journal of Computer Applications. 4, 9 ( August 2010), 14-19. DOI=10.5120/856-1199

@article{ 10.5120/856-1199,
author = { Ms.Kavita Raut, Ms.Saylee Gharge, Dr.Tanuja Sarode, Dr. H. B. Kekre },
title = { Article:Detection of Cancer Using Vector Quantization for Segmentation },
journal = { International Journal of Computer Applications },
issue_date = { August 2010 },
volume = { 4 },
number = { 9 },
month = { August },
year = { 2010 },
issn = { 0975-8887 },
pages = { 14-19 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume4/number9/856-1199/ },
doi = { 10.5120/856-1199 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T19:52:37.695601+05:30
%A Ms.Kavita Raut
%A Ms.Saylee Gharge
%A Dr.Tanuja Sarode
%A Dr. H. B. Kekre
%T Article:Detection of Cancer Using Vector Quantization for Segmentation
%J International Journal of Computer Applications
%@ 0975-8887
%V 4
%N 9
%P 14-19
%D 2010
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Breast cancer is one of the major causes of death among women. An improvement of early diagnostic techniques is critical for women’s quality of life. Mammography is the main test used for screening and early diagnosis. Contrast-enhanced magnetic resonance of the breast is the most attractive alternative to standard mammography. This paper presents a vector quantization segmentation method to detect cancerous mass from mammogram images. In order to increase radiologist’s diagnostic performance, several computer-aided diagnosis (CAD) schemes have been developed to improve the detection of primary signatures of this disease: masses and microcalcifications.

References
  1. J. Dengler, S. Behrens, and J. F. Desaga, “Segmentation of microcalcifications in mammograms,” IEEE Trans. Med. Imag., vol. 12, no. 4, pp. 634–642, Dec. 1993.
  2. D. Zhao, “Rule-based morphological feature extraction of microcalcifications in mammograms,” SPIE Med. Imag., vol. 1095, pp. 702–715,1993.
  3. S. C. Lo, H. P. Chan, J. S. Lin, H. Li, M. T. Freedman, and S. K. Mun, “Artificial convolution neural network for medical image pattern recognition,” Neural Networks, vol.8, no. 7/8, pp. 1201–1214, 1995.
  4. W. Zhang, K. Doi, M. L. Giger, Y. Wu, R. M. Nishikawa, and R. A. Schmidt, “Computerized detection of clustered microcalcifications in digital mammograms using a shiftinvariant artificial neural network,” Med. Phys., vol. 21, no. 4, pp. 517–524, 1994.
  5. Y. Wu, K. Doi, M. L. Giger, and M. Nishikawa, “Computerized detection of clustered microcalcifications in digital mammograms: Application of artificial neural networks,” Med. Phys., vol. 19, pp. 555–560, 1992.
  6. N. Karssemeijer, “A stochastic model for automated detection of calcifications in digital mammograms,” in Proc. 12th Int. Conf. IPMI, Wye,UK, 1991, pp. 227–238.
  7. N. Karssemeijer, “Recognition of clustered microcalcifications using a random field model,” SPIE Med. Imag., vol. 1905, pp. 776–786, 1993.
  8. F. Lefebvre, H. Benali, R. Gilles, E. Kahn, and R. D. Paola, “A fractal approach to the segmentation of microcalcification in digital mammograms,” Med. Phys.,vol. 22, no. 4, pp. 381–390, 1995.
  9. D. Brzakovic, P. Brzakovic, and M. Neskovic, “An approach to automated screening of mammograms,” SPIE Biomed. Image Processing, Biomed. Visual. vol. 1905, pp. 690–701, 1993.
  10. H. Yoshida, K. Doi, and R. M. Nishikawa, “Automated detection of clustered microcalcifications in digital mammograms using wavelet transform techniques,” SPIE Image Processing, vol. 2167, pp. 868–886, 1994.
  11. A.F.Laine, S. Schuler, J. Fan, and W. Huda,“Mammographic feature enhancement by multiscale analysis,” IEEE Trans. Med. Imag., vol. 13, no. 4, pp. 725–740, Dec. 1994.
  12. I. N. Bankman, W. A. Christens-Brry, D. W. Kim, I. N. Weinberg, O. B. Gatewood, and W. R. Brody, “Automated recognition of microcalcification clusters in mammograms,”SPIE Biomed. Image Processing, Biomed. Visual., vol.1905, pp. 731–738, 1993.
  13. Tou, J., and Gonzalez, Pattern Recognition Principles Addison-Wesley Publishing Company 1974.
  14. Chen, J., Kundu A. “Unsupervised texture segmentation using multichannel decomposition and hidden markov models”, IEEE Transactions on Image Processing 4(5):603-619, 1994.
  15. Pemmaraju, S., Mitra S., Shieh Y., Roberson G.“Segmentation of radiographic cervical images with neurofuzzy classification of multiresolution wavelets”, Proceedings of SPIE Medical Imaging -1995
  16. Dr. H. B. Kekre , Saylee Gharge , “Selection of Window Size for Image Segmentation using Texture Features,” International Conference on Advanced Computing & Communication Technologies(ICACCT-2008) Asia Pacific Institute of Information Technology SD India, Panipat ,08-09 November,2008.
  17. Dr. H. B. Kekre , Saylee Gharge , “Image Segmentation of MRI using Texture Features,” International Conference on Managing Next Generation Software Applications, School of Science and Humanities, Karunya University, Coimbatore, Tamilnadu, 05-06 December, 2008.
  18. Dr. H. B. Kekre , Saylee Gharge , “Statistical Parameters like Probability and Entropy applied to SAR image segmentation,” International Journal of Engineering Research & Industry Applications (IJERIA), Vol.2,No.IV,pp.341-353.
  19. Dr. H. B. Kekre , Saylee Gharge , “SAR Image Segmentation using co-occurrence matrix and slope magnitude,” ACM International Conference on Advances in Computing, Communication and Control (ICAC3-2009), pp.: 357-362, 23-24 Jan 2009, Fr. Conceicao Rodrigous College of Engg., Mumbai. Available on ACM portal.
  20. Robert M. Haralick, Statistical and Structural Approaches to Texture, IEEE Proceedings Of vol. 67, no. 5, May 1979.
  21. R. M. Gray, “Vector quantization”, IEEE ASSP Mag., pp.: 4-29, Apr. 1984
  22. Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEE Trans.Commun., vol. COM- 28, no. 1, pp.: 84-95, 1980
  23. H.B.Kekre, Tanuja K. Sarode, “New Fast Improved Clustering Algorithm for Codebook Generation for Vector Quantization”, International Conference on Engineering Technologies and Applications in Engineering, Technology and Sciences, Computer Science Department, Saurashtra University, Rajkot, Gujarat. (India), Amoghsiddhi Education Society, Sangli, Maharashtra (India) , 13th – 14th January 2008.
  24. H. B. Kekre, Tanuja K. Sarode, “New Fast Improved Codebook Generation Algorithm for Color Images using Vector Quantization,” International Journal of Engineering and Technology, vol.1, No.1, pp.: 67-77, September 2008.
  25. H. B. Kekre, Tanuja K. Sarode, “Fast Codebook Generation Algorithm for Color Images using Vector Quantization,” International Journal of Computer Science and Information Technology, Vol. 1, No. 1, pp.: 7-12, Jan 2009.
  26. H. B. Kekre, Tanuja K. Sarode, “An Efficient Fast Algorithm to Generate Codebook for Vector Quantization,” First International Conference on Emerging Trends in Engineering and Technology, ICETET-2008, held at Raisoni College of Engineering, Nagpur, India, pp.: 62- 67, 16-18 July 2008. Avaliable at IEEE Xplore.
  27. H. B. Kekre, Tanuja K. Sarode, “Fast Codebook Generation Algorithm for Color Images using Vector Quantization,” International Journal of Computer Science and Information Technology, Vol. 1, No. 1, pp.: 7-12, Jan 2009.
  28. H. B. Kekre, Tanuja K. Sarode, “Fast Codevector Search Algorithm for 3-D Vector Quantized Codebook”, WASET International Journal of cal Computer Information Science and Engineering (IJCISE), Volume 2, No. 4, pp.: 235-239, Fall 2008. Available: http://www.waset.org/ijcise.
  29. H. B. Kekre, Tanuja K. Sarode, “Fast Codebook Search Algorithm for Vector Quantization using Sorting Technique”, ACM International Conference on Advances in Computing, Communication and Control (ICAC3-2009), pp: 317-325, 23-24 Jan 2009, Fr. Conceicao Rodrigous College of Engg., Mumbai. Available on ACM portal.
  30. Jim Z.C. Lai, Yi-Ching Liaw, and Julie Liu, “A fast VQ codebook generation algorithm using codeword displacement”, Pattern Recogn. vol. 41, no. 1, pp.: 315–319,2008.
  31. C.H. Hsieh, J.C. Tsai, Lossless compression of VQ index with search order coding, IEEE Trans. Image Process. vol. 5, No. 11, pp.: 1579–1582, 1996.
  32. Chin-Chen Chang, Wen-Chuan Wu, “Fast Planar-Oriented Ripple Search Algorithm for Hyperspace VQ Codebook”, IEEE Transaction on image processing, vol 16, no. 6, pp.: 1538- 1547, June 2007.
  33. C. Garcia and G. Tziritas, “Face detection using quantized skin color regions merging and wavelet packet analysis,”= IEEE Trans. Multimedia, vol. 1, no. 3, pp.: 264–277, Sep. 1999.
  34. H. Y. M. Liao, D. Y. Chen, C. W. Su, and H. R. Tyan, “Real-time event detection and its applications to surveillance systems,” in Proc. IEEE Int. Symp. Circuits and Systems, Kos, Greece, pp.: 509–512, May 2006.
  35. J. Zheng and M. Hu, “An anomaly intrusion detection system based on vector quantization,” IEICE Trans. Inf. Syst., vol. E89-D, no. 1, pp.: 201–210, Jan. 2006.
  36. H. B. Kekre, Tanuja K. Sarode, Bhakti Raul, ”Color Image Segmentation using Kekre’s Fast Codebook Generation Algorithm Based on Energy Ordering Concept”, ACM International Conference on Advances in Computing,Communication and Control (ICAC3- 2009), pp.: 357-362, 23-24 Jan 2009, Fr. Conceicao Rodrigous College of Engg., Mumbai. Available on ACM portal.
  37. H. B. Kekre, Tanuja K. Sarode, Bhakti Raul, “Color Image Segmentation using Kekre’s Algorithm for Vector Quantization”, International Journal of Computer Science(IJCS), Vol. 3, No. 4, pp.: 287-292,Fall2008. Available:http://www.waset.org/ijcs.
  38. H. B. Kekre, Tanuja K. Sarode, Bhakti Raul, “Color Image Segmentation using Vector Quantization Techniques Based on Energy Ordering Concept” International Journal of Computing Science and Communication Technologies (IJCSCT) Volume 1, Issue 2, pp: 164-171, January 2009.
  39. H. B. Kekre, Tanuja K. Sarode, Bhakti Raul, “Color Image Segmentation Using Vector Quantization Techniques”,Advances in Engineering Science Sect. C (3), pp.: 35-42,July- September 2008.
  40. H. B. Kekre, Tanuja K. Sarode, “Speech Data Compression using Vector Quantization”, WASET International Journal of Computer and Information Science and Engineering (IJCISE), vol. 2, No. 4, pp.: 251-254, Fall 2008. available: http://www.waset.org/ijcise.
  41. H. B. Kekre, Ms. Tanuja K. Sarode, Sudeep D. Thepade,“Image Retrieval using Color-Texture Features from DCT on VQ Codevectors obtained by Kekre’s Fast Codebook Generation”, ICGSTInternational Journal on Graphics, Vision and Image Processing (GVIP), Volume 9, Issue 5, pp.: 1-8, September 2009. Available online at http://www.icgst.com/gvip/Volume9/Issue5/P115 0921752.
  42. H. B. Kekre, Kamal Shah, Tanuja K. Sarode, Sudeep D. Thepade, ”Performance Comparison of Vector Quantization Technique – KFCG with LBG, Existing Transforms and PCA for Face Recognition”, International Journal of Information Retrieval (IJIR), Vol. 02, Issue 1, pp.: 64-71,2009.
  43. L. Vincent, P. Soille, Watersheds in digital spaces: An efficient algorithm based on immersion Simulations, IEEE Trans. PAMI., 13 (6) (1991) 583–593.
  44. F. Meyer, Topographic distance and watershed lines,Signal Processing, 38 (1) (1994) 113–125.
  45. A. Bieniek, A. Moga, An efficient watershed algorithm based on connected components, Pattern Recognition, 33 (6) (2000) 907–916.
  46. M. Frucci, Oversegmentation reduction by flooding regions and digging watershed lines, International Journal of Pattern Recognition and Artificial Intelligence,
  47. L. E. Band, Topographic partition of watersheds with digital elevation models, Water Resources Res., 22 (1) (1986) 15–24.
  48. Leila Shafarenko and Maria Petrou, “Automatic Watershed Segmentation of Randomly Textured Color Images”, IEEE Transactions on Image Processing, Vol.6, No.11, pp.1530- 1544, 1997.
  49. Parveen, N.R.S, “Segmenting Tumors in Ultrasound Images,” Proceeding of the 2008 International Conference on Computing, Communication and Networking, pp.: 1-5, 2008.
  50. Basim Alhadidi, Mohammad H. Zu`bi and Hussam N. Suleiman, “Mammogram Breast Cancer Image Detection Using Image Processing Functions,” Information Technology Journal, Volume: 6, Issue: 2, pp.: 217-221, 2007.
  51. S. Saheb Basha, Dr. K. Satya Prasad, “Automatic Detection Of Breast cancer mass in mammograms using morphological Operators and Fuzzy C-Means,” Journal of Theoretical and Applied Information Technology, pp.: 704-709, 2005.
Index Terms

Computer Science
Information Sciences

Keywords

Mammography Segmentation Vector Quantization Clustering