We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Article:Performance Comparison of Image Retrieval Techniques using Wavelet Pyramids of Walsh, Haar and Kekre Transforms

by Akshay Maloo, Sudeep D. Thepade, Dr. H.B.Kekre
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 4 - Number 10
Year of Publication: 2010
Authors: Akshay Maloo, Sudeep D. Thepade, Dr. H.B.Kekre
10.5120/866-1216

Akshay Maloo, Sudeep D. Thepade, Dr. H.B.Kekre . Article:Performance Comparison of Image Retrieval Techniques using Wavelet Pyramids of Walsh, Haar and Kekre Transforms. International Journal of Computer Applications. 4, 10 ( August 2010), 1-8. DOI=10.5120/866-1216

@article{ 10.5120/866-1216,
author = { Akshay Maloo, Sudeep D. Thepade, Dr. H.B.Kekre },
title = { Article:Performance Comparison of Image Retrieval Techniques using Wavelet Pyramids of Walsh, Haar and Kekre Transforms },
journal = { International Journal of Computer Applications },
issue_date = { August 2010 },
volume = { 4 },
number = { 10 },
month = { August },
year = { 2010 },
issn = { 0975-8887 },
pages = { 1-8 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume4/number10/866-1216/ },
doi = { 10.5120/866-1216 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T19:52:57.684177+05:30
%A Akshay Maloo
%A Sudeep D. Thepade
%A Dr. H.B.Kekre
%T Article:Performance Comparison of Image Retrieval Techniques using Wavelet Pyramids of Walsh, Haar and Kekre Transforms
%J International Journal of Computer Applications
%@ 0975-8887
%V 4
%N 10
%P 1-8
%D 2010
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The paper presents performance comparison of Wavelet Pyramid based image retrieval techniques using Walsh, Haar and newly introduced Kekre wavelet transforms. Here content based image retrieval (CBIR) is done using the image feature set extracted from Wavelets applied on the image at various levels of decomposition. Here the image features are extracted by applying Wavelets on gray plane (average of red, green and blue) and color planes (red, green and blue components). The techniques Gray-Wavelets and Color-Wavelets are tested on image database having 11 categories with total 1000 images. Total 55 queries are fired on the database. The results show that precision and recall of Wavelets are better than complete transform based CBIR using Walsh and Haar transform, which proves that Wavelets give better discrimination capability in image retrieval at faster query execution speed. The Walsh and Haar Wavelets level-5 outperforms other Wavelets, because the higher level Wavelets are giving coarse color-texture features while the lower level are representing fine color-texture features which are less useful to differentiate the images in image retrieval. Color- Wavelets based CBIR have greater precision and recall than Gray-Wavelets based CBIR.

References
  1. H.B.Kekre, Sudeep D. Thepade, “Image Retrieval using Color-Texture Features Extracted from Walshlet Pyramid”, ICGST International Journal on Graphics, Vision and Image Processing (GVIP), Volume 10, Issue I, Feb.2010, pp.9-18, Available online www.icgst.com/gvip/Volume10/Issue1/P1150938876.html.
  2. H.B.Kekre, Sudeep D. Thepade, “Image Retrieval using Augmented Block Truncation Coding Techniques”, Proc. ACM Int. Conf. on Advances in Computing, Communication and Control (ICAC3-2009), 23-24 Jan 2009, Fr. Conceicao Rodrigous College of Engg., Mumbai. Is uploaded and available online at ACM portal.
  3. H.B.Kekre, Sudeep D. Thepade, “Rendering Futuristic Image Retrieval System”, Proc. National Conf. on Enhancements in Computer, Comm. and Info. Technology, EC2IT-2009,20-21 Mar 2009, K.J. Somaiya COE, Vidyavihar, Mumbai-77.
  4. H.B.Kekre, Sudeep D. Thepade, “Color Traits Transfer to Grayscale Images”, IEEE –International Conference on Emerging Trends in Engineering and Technology, ICETET-2008, 16-18 July 2008, Raisoni College of Engineering, Nagpur. Is uploaded and available online at IEEE Xplore CSDL, ACM Portal
  5. H.B.Kekre, Sudeep D. Thepade, “Image Blending In Vista Creation using Kekre’s LUV Color Space” , SPIT -IEEE Colloquium and International Conference, 04-05 Feb 2008, SPIT Andheri ,Mumbai.
  6. K.-C. Liang and C. C. Kuo, "WaveGuide: A Joint Wavelet-Based Image Representation and Description System," IEEE Trans. on Image Processing, vol. 8, no. 11, pp.1619-1629, 1999
  7. W. Y. Ma, B. S. Manjunath, "A comparison of wavelet features for texture annotation," Proc. of IEEE Int. Conf. on Image Processing, Vol. II, pp. 256-259, Washington D.C., Oct. 1995.
  8. Hirata K. and Kato T. “Query by visual example – content-based image retrieval”, In Proc. of Third International Conference on Extending Database Technology, EDBT’92, 1992, pp 56-71.
  9. Haar, Alfred, “Zur Theorie der orthogonalen Funktionen systeme”. (German), Mathematische Annalen, volume 69, No. 3, 1910, pp. 331–371.
  10. Charles K. Chui, “An Introduction to Wavelets”, Academic Press, 1992, San Diego, ISBN 0585470901.
  11. http://wang.ist.psu.edu/docs/related/Image.orig (last referred on June, 10th, 2009)
  12. A. K. Jain , A. Vailaya, “Image Retrieval using Colour and Shape," In Proc. of 2nd Asian Conference on Computer Vision (ACCV-95), Singapore, 1995, pp. 529-533.
  13. H.B.Kekre, Sudeep D. Thepade, “Ubicomp The Future of Computing Technology”, Techno Path : Journal of Science Technology and Management, Volume 1, Issue 2, 2009.
  14. Robert Li, Jung Kim, “Image Compression Using Fast Transformed Vector Quantization”, IEEE Applied Imagery Pattern Recognition Workshop, 2000 Proceedings, Volume 29, 2000, pp.141 – 145.
  15. B.G.Prasad, K.K. Biswas, and S. K. Gupta, “Region –based image retrieval using integrated color, shape, and location index”, International Journal on Computer Vision and Image Understanding Special Issue: Colour for Image Indexing and Retrieval, Vol. 94, Issues 1-3, April-June 2004, pp.193-233.
  16. Minh N. Do, , and Martin Vetterli, , “Wavelet-Based Texture Retrieval Using Generalized Gaussian Density and Kullback-Leibler Distance”, IEEE Transactions On Image Processing, Volume 11, Number 2, pp.146-158, February 2002.
  17. A. Gupta, R. Bach, C. Fuller, A. Hampapur, B. Horowitz, R. Jain, C.F. Shu “The Virage image search engine: an open framework for image management” in Storage and Retrieval for Image and Video Databases IV, Proc SPIE Vol. 2670, pp 76-87, 1996.
  18. M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. “Query by image and video content: The QBIC system,” IEEE Computer, vol. 28, pp. 23-32, 1995.
  19. H.B.Kekre, Sudeep D. Thepade, “Boosting Block Truncation Coding using Kekre’s LUV Color Space for Image Retrieval”, WASET International Journal of Electrical, Computer and System Engineering (IJECSE), Volume 2, Number 3, Summer 2008. Available online at http://www.waset.org/ijecse/v2/v2-3-23.pdf
  20. M. La Cascia, S. Sethi, S. Sclaroff. “Combining textual and visual cues for content-based image retrieval on the world wide web”, In IEEE Workshop on Content-based Access of Image and Video Libraries, pp 24–28, Santa Barbara, CA, June 1998.
  21. Carson M. Thomas, S. Belongie, J. M. Hellerstein, and J. Malik, “Blobworld: a system for region-based image indexing and retrieval”, In Visual Information and Information Systems (VISUAL), LNCS 1614, pages 509–516, Amsterdam, The Netherlands, June 1999.
  22. S. Sclaroff, L. Taycher, and M. La Cascia, “Image Rover: a content-based image browser for the world wide web”, In IEEE Workshop on Content-based Access of Image and Video Libraries, pp. 2–9, San Juan, Puerto Rico, June 1997.
  23. H.B.Kekre, Tanuja K. Sarode, Sudeep D. Thepade, “Image Retrieval using Color-Texture Features from DCT on VQ Codevectors obtained by Kekre’s Fast Codebook Generation”, ICGST International Journal on Graphics, Vision and Image Processing (GVIP), Volume 9, Issue V, Sept. 2009, pp. 1-8, Available onlineathttp://www.icgst.com/gvip/Volume9/Issue5
  24. Zaher Al Aghbari and Ruba Al-Haj, “Building SSeg-Tree for Image Representation and Retrieval”, ICGST Int. Journal on Graphics, Vision and Image Processing (GVIP), Special Issue on Image Retrieval and Representation, Vol. 6, Year 2006, pp. 101-109.
  25. M.Eisa, I.Elhenawy, A.E.Elalafi and H. Burkhardt, “Image Retrieval based on Invariant Features and Histogram Refinement”, ICGST Int. Journal on Graphics, Vision and Image Processing (GVIP) , Special Issue on Image Retrieval and Representation, Vol. 6, Year 2006, pp. 7-11.
  26. H.B.Kekre, Sudeep D. Thepade, “Color Based Image Retrieval using Amendment Block Truncation Coding with YCbCr Color Space”, International Journal on Imaging (IJI), Volume 2, Number A09, Autumn 2009, pp.2-14. Available online at www.ceser.res.in/iji.html
  27. H.B.kekre, Tanuja K. Sarode, Sudeep D. Thepade, “Color-Texture Feature based Image Retrieval using DCT applied on Kekre’s Median Codebook”, International Journal on Imaging (IJI), Volume 2, Number A09, Autumn 2009,pp. 55-65. Available online at www.ceser.res.in/iji.html
  28. Tuceryan M., Jain A.K.,“Texture Analysis Handbook of Pattern Recognition and Computer Vision (Eds. C.H.Chen, L.F.pau, P.S.P.Wang), 1994.
  29. H.B.Kekre, Sudeep D. Thepade, Archana Athawale, Anant Shah, Prathmesh Verlekar, Suraj Shirke, “Walsh Transform over Row Mean and Column Mean using Image Fragmentation and Energy Compaction for Image Retrieval”, International Journal on Computer Science and Engineering (IJCSE),Volume 2S, Issue1, January 2010, (ISSN: 0975–3397). Available online at www.enggjournals.com/ ijcse.
  30. H.B.kekre, Sudeep D. Thepade, “Improving ‘Color to Gray and Back’ using Kekre’s LUV Color Space”, IEEE International Advanced Computing Conference 2009 (IACC’09), Thapar University, Patiala, INDIA, 6-7 March 2009. Is uploaded and available online at IEEE Xplore.
  31. H.B.Kekre, Sudeep D. Thepade Akshay Maloo, “Query by Image Content using Color-Texture Features Extracted from Haarlet Pyramid”, International Journal Computer Applications (IJCA), Special issue on Computer Aided Soft Computing Techniques for Imaging and Biomedical Applications, August 2010.
  32. H.B.Kekre, Sudeep D. Thepade, Akshay Maloo, “Query by Image Content Using Colour Averaging Techniques”, for International Journal of Engineering Science and Technology (IJEST), Volume 2, Issue 6, 2010. Available online at http://www.ijest.info.
Index Terms

Computer Science
Information Sciences

Keywords

Content Based Image Retrival (CBIR) Walsh Wavelets Haar Wavelets Kekre Wavelets Texture