We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Radiation Effects on Unsteady MHD Free Convective Couette Flow of Heat Generation/Absorbing Fluid

by S. Das, S. K. Guchhait, R. N. Jana
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 39 - Number 3
Year of Publication: 2012
Authors: S. Das, S. K. Guchhait, R. N. Jana
10.5120/4804-7036

S. Das, S. K. Guchhait, R. N. Jana . Radiation Effects on Unsteady MHD Free Convective Couette Flow of Heat Generation/Absorbing Fluid. International Journal of Computer Applications. 39, 3 ( February 2012), 42-51. DOI=10.5120/4804-7036

@article{ 10.5120/4804-7036,
author = { S. Das, S. K. Guchhait, R. N. Jana },
title = { Radiation Effects on Unsteady MHD Free Convective Couette Flow of Heat Generation/Absorbing Fluid },
journal = { International Journal of Computer Applications },
issue_date = { February 2012 },
volume = { 39 },
number = { 3 },
month = { February },
year = { 2012 },
issn = { 0975-8887 },
pages = { 42-51 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume39/number3/4804-7036/ },
doi = { 10.5120/4804-7036 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:25:31.415446+05:30
%A S. Das
%A S. K. Guchhait
%A R. N. Jana
%T Radiation Effects on Unsteady MHD Free Convective Couette Flow of Heat Generation/Absorbing Fluid
%J International Journal of Computer Applications
%@ 0975-8887
%V 39
%N 3
%P 42-51
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Radiation effects on free convection MHD Couette flow of a viscous incompressible heat generating fluid confined between vertical plates have been studied. The governing equations are solved analytically using the Laplace transform technique. The variations of velocity and fluid temperature are presented graphically. It is observed that the velocity decreases with an increase in either magnetic parameter or radiation parameter or generation parameter or Prandtl number. It is also observed that the velocity increases with an increase in either Grashof number or time. An increase in either radiation parameter or Prandtl number leads to fall in the fluid temperature. It is seen that the fluid temperature increases with an increase in either heat generation parameter or time. Further, it is seen that the absolute value of shear stress at the moving plate increases with an increase in either magnetic parameter or radiation parameter while it decreases with an increase in either heat generation parameter or Prandtl number. The rate of heat transfer increases with an increase in either Prandtl number or heat generation parameter or time.

References
  1. Qian, S. and Bau, H. H. (2009). Magnetohydrodynamics based microfluidics. Mechanics Research Communications. 36:10-21.
  2. Lemoff, A. V. and Lee, A. P. B. (2000). An AC magnetohydrodynamic micropump. Sensors and Actuators. 63: 178 -185.
  3. West, J. , Karamata, B., Lillis, B., Gleeson, J. P., Alderman, J., Collins, J. K., Lane, W., Mathewson, A. and Berney, H. (2002). Application of magnetohydrodynamic actuation to continuous flow chemistry. Lab on a Chip. 2: 224 -230.
  4. West, J., Gleeson, J. P., Alderman, J., Collins, J. K. and Berney, H. Structuring B. (2003). Laminar flows using annular magnetohydrodynamic actuation. Sensors and Actuators. 96: 190 - 199.
  5. Bestman, A. R. and Adjepong, S. N. (1988). Unsteady hydromagnetic free- convection flow with radiative heat transfer in a rotating fluid. Space Sci. 143: 73 - 80.
  6. Ghoshdastidar, P. S. Heat Transfer. Oxford University Press. UK. 2004.
  7. Peterson, J., Tuttle, N., Cooper, H. and Baukal, C. (2007). Minimize facility flaring. Hydrocarbon Processing. 111 - 115.
  8. Korycki, R. (2006). Sensitivity analysis and shape optimization for transient heat conduction with radiation. Int. J. Heat Mass Transfer. 49: 2033 - 2043.
  9. Gbaorun, F. K., Ikyo, B., Iyorzor, B. and Okanigbun, R. (2008). A heat model for temperature distribution in a laptop computer. J. of NAMP. 12: 201-206.
  10. Jha, B. K. (2001). Natural Convection in unsteady MHD Couette flow. Heat and Mass Transfer. 37:329-331.
  11. Ogulu, A. and Motsa, S. (2005). Radiative heat transfer to magnetohydrodynamic Couette flow with variable wall temperature. Physica Scripta. 71:336-339.
  12. Mebine, P. (2007). Radiation effects on MHD Couette flow with heat transfer between two parallel plates. Global J. Pure and Appl.Math. 3(2): 1 - 12.
  13. Jha, B. K. and Ajibade, A. O. (2009). Free convective flow of heat generating/ absorbing fluid between vertical porous plates with periodic heat input. Int. Comm. Heat and Mass Transfer. 36:624-631.
  14. Jha, B. K. and Ajibade, A. O. (2010). Unsteady free convective Couette flow of heat generating/absorbing fluid. Int. J. Energy and Tech. 2 (12):1–9.
  15. Israel-Cookey, C., Amos, E. and Nwaigwe, C. (2010). MHD oscillatory Couette flow of a radiating viscous fluid in a porous medium with periodic wall temperature. Ameri.J Sci. Indust.Res. 1(2) : 326-331
  16. Narahari, M. (2010). Effects of thermal radiation and free convection currents on the unsteady Couette flow between two vertical parallel plates with constant heat flux at one boundary. WSEAS Transactions on Heat and Mass Transfer. 5(1): 21-30.
  17. Deka, R. K. and Bhattacharya, A. (2011). Unsteady free convective Couette flow of heat generating/absorbing fluid in porous medium. Int. J. Math. Arch. 2(6):853-863
  18. Alagoa, K. D., Tay, G. and Abbey, T. M. (1999). Radiation and free convection effects on a MHD flow through a porous medium between infinite parallel plates with time-dependent suction. Astro. Space Sci. 260 :455–468.
  19. Gbadeyan, J. A., Daniel, S. and Kefas, E. G. (2005). The radiation effect on electrohydrodynamic froth flow in vertical channel. J. Math. Associ. Nigeria. 32(2B) :388-396.
  20. Baoku, I. G., Israel-Cookey, C. and Olajuwon, B. I. (2010). Magnetic field and thermal radiation effects on steady hydromagnetic couette flow through a porous channel. Surveys in Mathematics and its Applications. 5 :215 – 228
  21. Cogley, A. C. L., Vincenti, W. G. and Gilles, E. S. (1968). Differential approximation for radiative heat transfer in a non grey gas near equilibrium. Am. Inst. Aeronat. Astronaut. J. 6: 551-553.
  22. Grief, R., Habib, I. S. and Lin, J. C. (1970). Laminar convection of a radiating gas in a vertical channel. J. Fluid Mech. 46 :513-520.
Index Terms

Computer Science
Information Sciences

Keywords

MHD Couette free convection magnetic parameter radiation heat generation Prandtl number and Grashof number.