CFP last date
20 December 2024
Reseach Article

Modified Interactive Evolutionary Computing for Speed Control of an Electric DC Motor

by M. B. Anandaraju, P. S. Puttaswamy
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 39 - Number 15
Year of Publication: 2012
Authors: M. B. Anandaraju, P. S. Puttaswamy
10.5120/4896-7421

M. B. Anandaraju, P. S. Puttaswamy . Modified Interactive Evolutionary Computing for Speed Control of an Electric DC Motor. International Journal of Computer Applications. 39, 15 ( February 2012), 19-24. DOI=10.5120/4896-7421

@article{ 10.5120/4896-7421,
author = { M. B. Anandaraju, P. S. Puttaswamy },
title = { Modified Interactive Evolutionary Computing for Speed Control of an Electric DC Motor },
journal = { International Journal of Computer Applications },
issue_date = { February 2012 },
volume = { 39 },
number = { 15 },
month = { February },
year = { 2012 },
issn = { 0975-8887 },
pages = { 19-24 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume39/number15/4896-7421/ },
doi = { 10.5120/4896-7421 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:26:31.486761+05:30
%A M. B. Anandaraju
%A P. S. Puttaswamy
%T Modified Interactive Evolutionary Computing for Speed Control of an Electric DC Motor
%J International Journal of Computer Applications
%@ 0975-8887
%V 39
%N 15
%P 19-24
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

DC motors are important components of most of the process control industries. PID controllers are extensively used in DC motors for speed as well as position control. Tuning of PID controller parameters is an iterative process and needs an optimization to achieve the desired performance. In this paper a modified form of Interactive Evolutionary Computing (IEC) is used as the tool for achieving optimization of PID controller parameters for the speed control of DC motor. Different error models are used for optimization and a comparison with Genetic Algorithm based approach is presented.

References
  1. Boldea and S.A. Nasar. Linear electric actuators and generators. Cambridge university press,1997
  2. E. Cerruto, A. Consoli, A. Raciti, and A. Testa. A robust adaptive controller for PM motor drives in robotic applications. Power Electronics, IEEE Transactions on, 10(1):62–71, 1995.
  3. N. Hemati, J.S. Thorp, and M.C. Leu. Robust nonlinear control of brushless DC motors for direct drive robotic applications. Industrial Electronics, IEEE Transactions on, 37(6):460–468, 1990.
  4. PM Pelczewski and U.H. Kunz. The optimal control of a constrained drive system with brushless dc motor. Industrial Electronics, IEEE Transactions on, 37(5):342–348, 1990.
  5. I. Parmee, D. Cvetkovic, C. Bonham, and I. Packham. Intoducing prototype interactive evolutionary systems for ill-defined multi-objective design environments. Advances in Engineering Software, 32:429–441, 2001
  6. H.P. Schwefel. Kybernetische evolution als strategie der experimentellen forschung in der tromungstechnik. 1965
  7. I. Rechenberg. Case studies in evolutionary experimentation and computation. Comput. Methods Appl. Mech. Engrg., 186:125–140, 2000
  8. M B Anandaraju, Dr. P S Puttaswamy and Jaswant Singh Rajpurohit. Article: Genetic Algorithm: An approach to Velocity Control of an Electric DC Motor. International Journal of Computer Applications 26(1):37-43, July 2011.
Index Terms

Computer Science
Information Sciences

Keywords

DC motor PID IEC GA optimization