CFP last date
20 December 2024
Reseach Article

New Clustering Algorithm for Vector Quantization using Walsh Sequence

by H. B. Kekre, Tanuja K. Sarode, Jagruti K. Save
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 39 - Number 1
Year of Publication: 2012
Authors: H. B. Kekre, Tanuja K. Sarode, Jagruti K. Save
10.5120/4782-6985

H. B. Kekre, Tanuja K. Sarode, Jagruti K. Save . New Clustering Algorithm for Vector Quantization using Walsh Sequence. International Journal of Computer Applications. 39, 1 ( February 2012), 4-9. DOI=10.5120/4782-6985

@article{ 10.5120/4782-6985,
author = { H. B. Kekre, Tanuja K. Sarode, Jagruti K. Save },
title = { New Clustering Algorithm for Vector Quantization using Walsh Sequence },
journal = { International Journal of Computer Applications },
issue_date = { February 2012 },
volume = { 39 },
number = { 1 },
month = { February },
year = { 2012 },
issn = { 0975-8887 },
pages = { 4-9 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume39/number1/4782-6985/ },
doi = { 10.5120/4782-6985 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:25:17.425759+05:30
%A H. B. Kekre
%A Tanuja K. Sarode
%A Jagruti K. Save
%T New Clustering Algorithm for Vector Quantization using Walsh Sequence
%J International Journal of Computer Applications
%@ 0975-8887
%V 39
%N 1
%P 4-9
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper we present an effective clustering algorithm to generate codebook for vector quantization (VQ). Constant error is added every time to split the clusters in LBG, resulting in formation of cluster in one direction which is 1350 in 2-dimensional case. Because of this reason clustering is inefficient resulting in high MSE in LBG. To overcome this drawback of LBG proportionate error is added to change the cluster orientation in KPE. Though the cluster orientation in KPE is changed, its variation is limited to ± 450 over 1350. KEVR introduces new orientation every time to split the clusters. But in KEVR the error vector sequence is the binary representation of numbers, so the cluster orientation change slowly in every iteration. To overcome this drawback we propose the technique which uses Walsh sequence to rotate the error vector. The proposed technique (Kekre’s error vector rotation using Walsh – KEVRW) is based on KEVR algorithm. The proposed methodology is tested on different training images for code books of sizes 128, 256, 512, 1024. Our result shows that KEVRW gives less MSE and high PSNR compared to LBG, KPE and KEVR.

References
  1. A. Gersho, R. M. Gray, "Vector Quantization and Signal Compression", Kluwer Academic Publishers, Boston, MA, 1991
  2. R. M. Gray, "Vector quantization", IEEE ASSP Mag, Apr.1984
  3. H. B. Kekre and S. D. Thepade, "Image Retrieval using Augmented Block Truncation Coding Techniques", ACM International Conference on Advances in Computing, Communication and Control (ICAC3-2009), pp. 384-390, Jan 2009, Fr. Conceicao Rodrigous College of Engg., Mumbai.
  4. Y. C. Liaw, J. Z. C. Lai, and W. Lo, "Image Restoration of Compressed Image using Classified Vector Quantization",Pattern Recogn. vol. 35, No.2, pp. 181–192, 2002.
  5. N.M. Nasrabadi and Y. Feng, "Image Compression using Address Vector Quantization", IEEE Trans. Commun., vol. 38, No. 12, pp. 2166–2173, 1990.
  6. T. Kim, "Side Match and Overlap Match Vector Quantizers for Images", IEEE Trans. Image Process., vol. 1, No. 2, pp.170–185, 1992.
  7. K.N. Ngan and H.C. Koh, "Predictive Classified Vector Quantization", IEEE Trans. Image Process. vol. 1, No. 3, pp. 269–280, 1992.
  8. A. A. Abdelwahab and N. S. Muharram, "A Fast Codebook Design Algorithm Based on a Fuzzy Clustering Methodology", International Journal of Image and Graphics, vol. 7, No. 2, pp. 291-302, 2007.
  9. C. Garcia and G. Tziritas, "Face Detection using Quantized Skin Color Regions Merging and Wavelet Packet Analysis", IEEE Trans. Multimedia, vol. 1, No. 3, pp. 264–277, Sep. 1999
  10. H. B. Kekre, T. K. Sarode and B. Raul, "Color Image Segmentation using Kekre’s Algorithm for Vector Quantization", International Journal of Computer Science (IJCS), vol. 3,No. 4, pp. 287-292, Fall 2008.
  11. H. B. Kekre, T. K. Sarode and B. Raul, "Color Image Segmentation using Vector Quantization Techniques Based on Energy Ordering Concept", International Journal of Computing Science and Communication Technologies (IJCSCT), vol. 1, Issue 2, January 2009.
  12. H. B. Kekre and T. K. Sarode, "Speech Data Compression using Vector Quantization", WASET, International Journal of Computer and Information Science and Engineering, (IJECSE), vol. 2, Number 4, pp. 251-254, 2008.
  13. H. B. Kekre, T. K. Sarode and S. D. Thepade, "Image Retrieval using Color-Texture Features from DCT on VQ Codevectors obtained by Kekre’s Fast Codebook Generation", ICGST-International Journal on Graphics, Vision and Image Processing (GVIP), vol. 9, Issue 5, pp. 1-8, September 2009.
  14. H. B. Kekre, T. K. Sarode and S. Gharge, "Detection and Demarcation of Tumor using Vector Quantization in MRI images,” International Journal of Engineering Science and Technology, vol.1, Number 2, pp. 59-66, 2009.
  15. C. D. Bei and R. M. Gray, "An Improvement of the Minimum Distortion Encoding Algorithm for Vector Quantization", IEEE Trans. Commun., vol. 33, No. 10, pp. 1132–1133, Oct. 1985.
  16. S. W. Ra, and J. K. Kim, "A Fast Mean-Distance-Ordered Partial Codebook Search Algorithm for Image Vector Quantization", IEEE Trans. on Circuits and Systems-11,Analog and Digital Signal Processing, vol. 40, No. 9, pp. 576-579, 1993.
  17. Z. Li, and Z.- M. Lu, "Fast Codevector Search Scheme for 3D Mesh Model Vector Quantization", Electron. Lett., vol. 44, No. 2, pp. 104-105, Jan 2008.
  18. H. B. Kekre and T. K. Sarode, "Centroid Based Fast Search Algorithm for Vector Quantization", International Journal of Imaging (IJI), vol. 1, No. 08, pp. 73-83, Autumn 2008
  19. C. M. Huang and R. W. Harris, "A Comparison of Several Vector Quantization Codebook Generation Approaches", IEEE Trans. On Image Processing, vol. 2, No. 1, pp. 108-112, 1993
  20. Y. Linde, A. Buzo, and R. M. Gray, "An Algorithm for Vector Quantizer Design", IEEE Trans. Commun., vol. COM-28, No. 1, pp. 84-95, 1980
  21. H. B. Kekre and T. K. Sarode, "New Clustering Algorithm for Vector Quantization using Rotation of Error Vector", International Journal of Computer Science and Information Security,(IJCSIS), vol. 7, No. 3, pp. 159-165, 2010.
  22. H. B. Kekre and T. K. Sarode, "Clustering Algorithm for codebook Generation using Vector Quantization", National Conference on Image Processing, TSEC, India, Feb 2005.
  23. H.B.Kekre and D. Mishra, "Density Distribution and Sector Mean with Zero-Sal and Highest-Cal Components in Walsh transform Sectors as Feature Vectors for Image Retrieval", International Journal of Computer Scienece and Information Security (IJCSIS), vol.8, No. 4, 2010, ISSN 1947-5500
  24. J.L.Walsh, "A Closed Set of Orthogonal Functions", American Journal of Mathematics, vol. 45, pp. 5-24, 1923.
Index Terms

Computer Science
Information Sciences

Keywords

Codebook Code vector Encoding Walsh Function Codebook Generation Algorithm Image Compression.