CFP last date
20 February 2025
Reseach Article

Inverse Circular Saw

by Gunjan Srivastava, Shafali Agarwal, Vikas Srivastava, Ashish Negi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 36 - Number 8
Year of Publication: 2011
Authors: Gunjan Srivastava, Shafali Agarwal, Vikas Srivastava, Ashish Negi
10.5120/4510-6377

Gunjan Srivastava, Shafali Agarwal, Vikas Srivastava, Ashish Negi . Inverse Circular Saw. International Journal of Computer Applications. 36, 8 ( December 2011), 13-16. DOI=10.5120/4510-6377

@article{ 10.5120/4510-6377,
author = { Gunjan Srivastava, Shafali Agarwal, Vikas Srivastava, Ashish Negi },
title = { Inverse Circular Saw },
journal = { International Journal of Computer Applications },
issue_date = { December 2011 },
volume = { 36 },
number = { 8 },
month = { December },
year = { 2011 },
issn = { 0975-8887 },
pages = { 13-16 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume36/number8/4510-6377/ },
doi = { 10.5120/4510-6377 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:23:04.677341+05:30
%A Gunjan Srivastava
%A Shafali Agarwal
%A Vikas Srivastava
%A Ashish Negi
%T Inverse Circular Saw
%J International Journal of Computer Applications
%@ 0975-8887
%V 36
%N 8
%P 13-16
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Superior Mandelbrot set is the term, which Rani and Kumar used to make Circular Saw using complex polynomial equation zn+c .The objective of this paper is to analyze the fractals using same equation with condition; when n is negative.

References
  1. Ashish Negi and Mamta Rani, A new approach to dynamic noise on superior Mandelbrot set, Chaos, Solitons & Fractals (2008)(36)(4), pp. 1089-1096.
  2. B. B. Mandelbrot, The Fractal Geometry of Nature,W. H, Freeman Company, San Francisco, CA (1982).
  3. C. Pickover, “Computers, Pattern, Chaos, and Beauty”, St. Martin’s Press, NewYork, 1990.
  4. D. Ashlock, Evolutionary Exploration of the Mandelbrot Set, Proc. IEEE Congress on Evolutionary Computation, 2006, CEC 2006, pp. 2079-2086.
  5. D. Rochon, A generalized Mandelbrot set for bicomplex numbers, Fractals 8(4)(2000), pp. 355-368.
  6. M. Rani and V. Kumar, Superior Mandelbrot set, J. Korean Soc. Math. Edu. Ser. D (2004)8(4), pp. 279-291.
  7. Mamta Rani, and Manish Kumar, Circular saw Mandelbrot sets, in: WSEAS Proc. 14th Int. conf. on Applied Mathematics (Math ’09): Recent Advances in Applied Mathematics, Spain, Dec 14-16, 2009, 131-136.
  8. Mann,W.R. Mean Value Methods in Iteration. Proc. Amer. Math. Soc. 4,504-510.
  9. Richard M. Crownover, Introduction to Fractals and Chaos, Jones & Barlett Publishers, 1995.
  10. Robert L. Devaney, A First Course in Chaotic Dynamical Systems: Theory and Experiment, Addison- Wesley, 1992.
Index Terms

Computer Science
Information Sciences

Keywords

Superior Mandelbrot set Fractals Circular Saw Escape Criteria Mann Iteration