CFP last date
20 January 2025
Reseach Article

A Comprehensive Analysis and study in Intrusion Detection System using Data Mining Techniques

by G. V. Nadiammai, S. Krishnaveni, M. Hemalatha
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 35 - Number 8
Year of Publication: 2011
Authors: G. V. Nadiammai, S. Krishnaveni, M. Hemalatha
10.5120/4425-6161

G. V. Nadiammai, S. Krishnaveni, M. Hemalatha . A Comprehensive Analysis and study in Intrusion Detection System using Data Mining Techniques. International Journal of Computer Applications. 35, 8 ( December 2011), 51-56. DOI=10.5120/4425-6161

@article{ 10.5120/4425-6161,
author = { G. V. Nadiammai, S. Krishnaveni, M. Hemalatha },
title = { A Comprehensive Analysis and study in Intrusion Detection System using Data Mining Techniques },
journal = { International Journal of Computer Applications },
issue_date = { December 2011 },
volume = { 35 },
number = { 8 },
month = { December },
year = { 2011 },
issn = { 0975-8887 },
pages = { 51-56 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume35/number8/4425-6161/ },
doi = { 10.5120/4425-6161 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:21:29.472984+05:30
%A G. V. Nadiammai
%A S. Krishnaveni
%A M. Hemalatha
%T A Comprehensive Analysis and study in Intrusion Detection System using Data Mining Techniques
%J International Journal of Computer Applications
%@ 0975-8887
%V 35
%N 8
%P 51-56
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Data mining refers to extracting knowledge from large amounts of data. Most of the current systems are weak at detecting attacks without generating false alarms. Intrusion detection systems (IDSs) are increasingly a key part of system defense. An intrusion can be defined as any set of actions that compromise the integrity, confidentiality or availability of a network resource(such as user accounts, file system, kernels & so on).Data mining plays a prominent role in data analysis. In this paper, classification techniques are used to predict the severity of attacks over the network. I have compared zero R classifier, Decision table classifier & Random Forest classifier with KDDCUP 99 databases from MIT Lincoln Laboratory.

References
  1. Alan Bivens, Chandrika Palagiri, Rasheda Smith, Boleslaw Szymanski, ”Network-Based Intrusion Detection Using Neural Networks”, in Proceedings of the Intelligent Engineering Systems Through Artificial Neural Networks, St.Louis, ANNIE-2002, and Vol: 12, pp- 579-584, ASME Press, New York.
  2. Aly Ei-Semary, Janica Edmonds, Jesus Gonzalez-Pino, Mauricio Papa, “Applying Data Mining of Fuzzy Association Rules to Network Intrusion Detection”, in the Proceedings of Workshop on Information Assurance United States Military Academy 2006, IEEE Communication Magazine, West Point, NY,DOI:10.1109/IAW.2006/652083.
  3. Amir Azimi, Alasti, Ahrabi, Ahmad Habibizad Navin, Hadi Bahrbegi, “A New System for Clustering & Classification of Intrusion Detection System Alerts Using SOM”, International Journal of Computer Science & Security, Vol: 4, Issue: 6, pp-589-597, 2011.
  4. Anderson.J.P, “Computer Security Threat Monitoring & Surveilance”, Technical Report, James P Anderson co., Fort Washington, Pennsylvania, 1980.
  5. Data Mining:Concepts and Techniques, 2nd Edition , Jiawei Han and Kamber,Morgan kaufman Publishers, Elsevier Inc,2006.
  6. Denning .D.E, ”An Intrusion Detection Model”, Transactions on Software Engineering, IEEE Communication Magazine, 1987,SE-13, PP-222-232,DOI:10.1109/TSE.1987.232894.
  7. Dewan Md, Farid, Mohammed Zahidur Rahman, “Anomaly Network Intrusion Detection Based on Improved Self Adaptive Bayesian Algorithm”, Journal of Computers, Vol 5, pp-23-31, Jan 2010, DOI:10.4.304/jcp 5.1.
  8. ZeroR avaialable at: http://en.Wikipedia.org/wiki/ZeroR
  9. Decision tree, available at: http://en.Wikipedia.org/wiki/Decision_tree
  10. Random Forest avaialable at: http://en.Wikipedia.org/wiki/Random_Forest
  11. KDD Cup 1999 Data, available at: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
  12. Jake Ryan, Meng - Jang Lin, Risto Miikkulainen, ”Intrusion Detection With Neural Networks”, Advances in Neural Information Processing System 10, Cambridge, MA:MIT Press,1998,DOI:10.1.1.31.3570.
  13. Jian Pei, Upadhayaya.S.J, Farooq.F, Govindaraju.V,”Data Mining for Intrusion Detection: Techniques, Applications & Systems, in the Proceedings of 20th International Conference on Data Engineering, pp-877-887, 2004.
  14. Jin-Ling Zhao, Jiu-fen Zhao ,Jian-Jun Li, “Intrusion Detection Based on Clustering Genetic Algorithm”, in Proceedings of International Conference on Machine Learning & Cybernetics (ICML),2005, IEEE Communication Magazine,ISBN:0-7803-9091-1,DOI: 10.1109/ICML.2005.1527621.
  15. Macros .M. Campos, Boriana L. Milenora, “ Creation & Deployment of Data Mining based Intrusion Detection Systems in Oracle Db 10g”, in the proceedings of 4th International Conference on Machine Learning & Applications, 2005.
  16. Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu and Ali A. Ghorbani, "A detailed analysis of the KDD CUP 99 data set", in Proceedings of the Second IEEE international conference on Computational intelligence for security and defense applications, pp. 53-58, Ottawa, Ontario, Canada, 2009.
  17. Norouzian.M.R, Merati.S, “Classifying Attacks in a Network Intrusion Detection System Based on Artificial Neural Networks”, in the Proceedings of 13th International Conference on Advanced Communication Technology(ICACT), 2011,ISBN:978-1-4244-8830-8,pp-868-873.
  18. Oswais.S, Snasel.V, Kromer.P, Abraham. A, “Survey: Using Genetic Algorithm Approach in Intrusion Detection Systems Techniques”, in the Proceedings of 7th International Conference on Computer Information & Industrial Management Applications (CISIM), 2008, IEEE Communication Magazine,pp-300-307,ISBN:978-0-7695-318-7,DOI:10.1109/CISM.2008-49.
  19. Sadiq Ali Khan, “Rule-Based Network Intrusion Detection Using Genetic Algorithm”, International Journal of Computer Applications, No: 8, Article: 6, 2011, DOI: 10.5120/2303-2914.
  20. Sathyabama.S, Irfan Ahmed.M.S, Saravanan.A,”Network Intrusion Detection Using Clustering: A Data Mining Approach”, International Journal of Computer Application (0975-8887), Sep-2011, Vol: 30, No: 4, ISBN: 978-93-80864-87-5, DOI: 10.5120/3670-5071.
  21. Sekeh.M.A,Bin Maarof.M.A, “Fuzzy Intrusion Detection System Via Data Mining with Sequence of System Calls”, in the Proceedings of International Conference on Information Assurance & security (IAS)2009,IEEE Communication Magazine, pp- 154-158,ISBN:978-0-7695-3744-3,DOI:10.1109/IAS.2009.32.
  22. Shanmugavadivu .R, “Network Intrusion Detection System Using Fuzzy Logic”, Indian Journal of Computer Science & Engineering, and ISSN: 0976-5166, Vol: 2, No.1, pp- 101-110, 2011.
  23. Shilendra Kumar, Shrivastava ,Preeti Jain, “Effective Anomaly Based Intrusion Detection Using Rough Set Theory & Support Vector Machine(0975-8887), Vol:18,No:3, March 2011,DOI: 10.5120/2261-2906.
  24. Srinivas Mukkamala, Andrew H. Sung, Ajith Abraham, “Intrusion Detection Using an Ensemble of Intelligent Paradigms”,Journal of Network & Computer Applications ,pp-1-15, 2004.
  25. Taeshik Shon, Jong Sub Moon, “A Hybrid Machine Learning Approach to Network Anomaly Detection”, Information Sciences 2007, Vol: 177, Issue: 18, Publisher: USENIX Association, pp- 3799-3821, ISSN:00200255,DOI:10.1016/j.ins-2007.03.025.
  26. Teng.H.S, Chen.K and Lu.S.C, “Adaptive Real-Time Anomaly Detection using Inductively Generated Sequential Patterns, in the Proceedings of Symposium on research in Computer Security & Privacy, IEEE Communication Magazine,1990, pp-278-284.
  27. Vera Marinova-Boncheva, “A Short Survey of Intrusion Detection Systems”, Institute of Information Technologies, 1113 Sofia, pp-23-30, 2007.
Index Terms

Computer Science
Information Sciences

Keywords

Data Mining Intrusion Detection Machine Learning Zero R Decision Table & Random Forest classifier KDDCup99 dataset