CFP last date
20 January 2025
Reseach Article

Change Detection by Fusion/Contextual Classification based on a Hybrid DSmT Model and ICM with Constraints

by Azeddine Elhassouny, Soufiane Idbraim, Aissam Bekkari, Driss Mammass, Danielle Ducrot
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 35 - Number 8
Year of Publication: 2011
Authors: Azeddine Elhassouny, Soufiane Idbraim, Aissam Bekkari, Driss Mammass, Danielle Ducrot
10.5120/4422-6154

Azeddine Elhassouny, Soufiane Idbraim, Aissam Bekkari, Driss Mammass, Danielle Ducrot . Change Detection by Fusion/Contextual Classification based on a Hybrid DSmT Model and ICM with Constraints. International Journal of Computer Applications. 35, 8 ( December 2011), 28-40. DOI=10.5120/4422-6154

@article{ 10.5120/4422-6154,
author = { Azeddine Elhassouny, Soufiane Idbraim, Aissam Bekkari, Driss Mammass, Danielle Ducrot },
title = { Change Detection by Fusion/Contextual Classification based on a Hybrid DSmT Model and ICM with Constraints },
journal = { International Journal of Computer Applications },
issue_date = { December 2011 },
volume = { 35 },
number = { 8 },
month = { December },
year = { 2011 },
issn = { 0975-8887 },
pages = { 28-40 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume35/number8/4422-6154/ },
doi = { 10.5120/4422-6154 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:21:27.637107+05:30
%A Azeddine Elhassouny
%A Soufiane Idbraim
%A Aissam Bekkari
%A Driss Mammass
%A Danielle Ducrot
%T Change Detection by Fusion/Contextual Classification based on a Hybrid DSmT Model and ICM with Constraints
%J International Journal of Computer Applications
%@ 0975-8887
%V 35
%N 8
%P 28-40
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The Dezert - Smarandache Theory (DSmT) used for the fusion and the modeling of the classes sets of themes has shown its performances in the detection and the cartography of the changes. Moreover the contextual classification with the research for the optimal solution by an ICM (Iterated conditional mode) algorithm with constraints allows to take in account the parcellary aspect of the thematic classes, thus, the introduction of this contextual information in the fusion process has enabled us to better identify the topics of surface and the detection of the changes.

References
  1. Smarandache, F. and Dezert J. (Editors). 2004. Advances and Applications of DSmT for Information Fusion (Collected works), vol. 1, American Research Press, Rehoboth, U.S.A.
  2. Smarandache, F. and Dezert, J. 2006. Advances and Applications of DSmT for Information Fusion (Collected works), vol. 2, American Research Press, Rehoboth, U.S.A.
  3. Smarandache, F. and Dezert, J. 2009. Applications and Advances of DSmT for Information Fusion (Collected works), Vol. 3, American Research Press, Rehoboth, ARP.
  4. Idbraim, S., Ducrot, D. D. Mammass and Aboutajdine, D. 2009. An unsupervised classification using a novel ICM method with constraints for land cover mapping from remote sensing imagery, International Review on Computers and Software (I.RE.CO.S.), Vol. 4, no. 2.
  5. Ducrot, D. 2005. Méthodes d'analyse et d'interprétation d'images de télédétection multi-sources Extraction de caractéristiques du paysage, habilitation thesis, France.
  6. Mercier, G.2007. Outils pour la télédétection opérationnelle, habilitation thesis, Rennes I university, France.
  7. Corgne, S., Hubert-Moy, L., Dezert, J. and Mercier, G. 2003. Land cover change prediction with a new theory of plausible and paradoxical reasoning, ISIF2003, Colorado, USA, March 2003.
  8. Smarandache, F. and Dezert, J. 2006. An Introduction to the DSm Theory for the Combination of Paradoxical, Uncertain and Imprecise Sources of Information, Information&Security International Journal, 1st August 2006.
  9. Moraa, B., Fourniera, R. A. and Foucherb, S. 2010. Application of evidential reasoning to improve the mapping of regenerating foreststands, International Journal of Applied Earth Observation and Geoinformation.
  10. Basse, R. M. 2006. Université de Nice, La prise en compte de l'incertitude dans une démarche de modélisation prédictive, MoDyS, Lyon, France, 8 and 9 Novembre 2006.
  11. Bouakache, A. and Belhadj-Aissa, A. 2009. Satellite image fusion using Dezert-Smarandache theory, DSmT-book3, Master Project Graduation, University Houari Boumediene.
  12. Khedam, R., Bouakache, A., Mercier, G. and Belhadj-Aissa, A. 2006. Fusion multidate à l'aide de la théorie de Dempster-Shafer pour la détection et la cartographie des changements : application aux milieux urbain et périurbain de la région d'Alger, Télédétection, Vol. 6, no. 4, pp. 359 404.
  13. Djiknavorian, P. 2008. Fusion d'informations dans un cadre de raisonnement de Dezert-Smarandache appliquée sur des rapports de capteurs ESM sous le STANAG 1241, Memory to obtain the degree (M.Se.), Laval University, Quebec.
  14. Anne-Laure, J., Martin, A. and Maupin, P. 2008. Gestion de l'information paradoxale contrainte par des requêtes pour la classification de cibles dans un réseau de capteurs multi-modalités, SCIGRAD’08, Brest, France, 24-25 novembre 2008.
  15. Foucher, S., Germain, M., Boucher, J. M. and Bénié, G. B. 2002. Multisource Classification Using ICM and Dempster-Shafer Theory, IEEE Transaction on Instrumentation and Measurement, Vol. 51, no. 2, APRIL
  16. Bloch, I. 2003. Fusion d'informations en traitement du signal et des images, IC2, Hermès Science, Traité IC2, Paris, France.
  17. Bloch, I. Fusion d'informations en image et vision, ENST - CNRS UMR 5141 LTCI, Paris - France.
  18. Lemeret, Y., Lefevre, E. and Jolly, D. 2004. Fusion de données provenant d'un laser et d'un radar en utilisant la théorie de Dempster-Shafer, MAJECSTIC'04, France.
  19. Fiche, A. and Martin, A. 2009. Bayesian approach and continuous belief functions for classification, LFA, Annecy, France, 5-6 November 2009.
  20. Germain, M., Boucher, J. M., Bénié, G. B. and Beaudry, E. 2004. Fusion évidentielle multi source basée sur une nouvelle approche statistique floue, ISIVC04, Brest, France.
  21. Martin, A. 2005. Fusion de classifieurs pour la classification d'images sonar, RNTI-E-5, pp 259 268, novembre 2005.
  22. Chitoub, S. 2004. Combinaison de classifieurs : une approche pour l'amélioration de la classification d'images multisources multidates de télédétection, Télédétection, vol. 4, no. 3, pp. 289 301.
  23. Sitraka, R., Solofoarisoa, R. And Solofo, R. 2009. Combinaison de classificateurs selon la théorie de Dempster -Shafer pour la classification d'images satellitaires, Mada-Géo13 (ISSN 2074 4587), Mai 2009.
  24. Corgne, S. 2004. Modélisation prédictive de l'occupation des sols en contexte agricole intensif : application à la couverture hivernale des sols en Bretagne, Doctoral thesis, Rennes 2 university, france, 10 December 2004.
  25. Osswald, C. 2005. Modèles et consensus en fusion : influence sur la décision et la complexité du processus, seminar, ENSTA , France, 20 October 2005.
  26. Zhun-ga, L., Dezert, J. and Pan, Q. 2010. A new measure of dissimilarity between two basic belief assignments, hal-00488045, ScientificCommons, 1 Jun 2010.
  27. Dezert, J. and Smarandache, F. 2008. A new probabilistic transformation of belief mass assignment, International Conference on Information Fusion, Cologne: Germany (2008).
Index Terms

Computer Science
Information Sciences

Keywords

Detection of the changes Image classification Fusion Hybrid DSmT model Decision rule DSmP Satellite images ICM