CFP last date
20 January 2025
Reseach Article

New Features for the Classification of Mammographic Masses

by Florian Wagner, Thomas Wittenberg
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 35 - Number 4
Year of Publication: 2011
Authors: Florian Wagner, Thomas Wittenberg
10.5120/4391-6092

Florian Wagner, Thomas Wittenberg . New Features for the Classification of Mammographic Masses. International Journal of Computer Applications. 35, 4 ( December 2011), 29-35. DOI=10.5120/4391-6092

@article{ 10.5120/4391-6092,
author = { Florian Wagner, Thomas Wittenberg },
title = { New Features for the Classification of Mammographic Masses },
journal = { International Journal of Computer Applications },
issue_date = { December 2011 },
volume = { 35 },
number = { 4 },
month = { December },
year = { 2011 },
issn = { 0975-8887 },
pages = { 29-35 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume35/number4/4391-6092/ },
doi = { 10.5120/4391-6092 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:21:08.688679+05:30
%A Florian Wagner
%A Thomas Wittenberg
%T New Features for the Classification of Mammographic Masses
%J International Journal of Computer Applications
%@ 0975-8887
%V 35
%N 4
%P 29-35
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Computer-assisted diagnosis (CADx) for the characterization of mammographic masses as benign or malignant has a high potential to help radiologists during the critical process of diagnostic decision making. We have developed a new set of features for the characterization of masses which is especially designed to describe the intensity transition from the center of a mass up to its surrounding tissue. Furthermore, we have investigated the performance of this set with different image quantization (8 bit and 12 bit). The suggested features are based on the idea to characterize the lesion with a predefined number (k) of concentric regions defined by the distance to its margin and to the border of its segmentation, respectively. We evaluated the classification performance for different values of k using the area Az under the receiver operating characteristic (ROC) curve. Our dataset contained 750 lesions from a publicly available mammography database. For each k an optimal feature subset was selected by a genetic algorithm. The Az of these subsets ranged from 0.74 to 0.76 on 8 bit images and from 0.76 to 0.77 on 12 bit images.

References
  1. Statistisches Bundesamt, “Gesundheitsberichterstattung des Bundes: Gesundheit in Deutschland“, (2006). http://www.gbe-bund.de/.
  2. Heywang-Köbrunner, S. H. and Schreer, I.,
  3. Bildgebende Mammadiagnostik: Untersuchungstechnik, Befundmuster, Differenzialdiagnose und Interventionen ], Georg Thieme Verlag, 2., überarbeitete und erweiterte Auflage ed. (2003).
  4. Kopans, D.,”The positive predictive value of mammography.”, Am. J. Roentgenol 158, 521-526 (1992).
  5. Elter, M. and Haßlmeyer, E., “A knowledge-based approach to the cadx of mammographic masses”, in
  6. Medical Imaging: Computer-Aided Diagnosis ], 6915, 69150L:1-8, SPIE (2008).
  7. Elter, M. and Held, C., “Semiautomatic segmentation for the computer aided diagnosis of clustered micro calcifications”, in
  8. Medical Imaging: Computer-Aided Diagnosis ], 6915, 691524:1-8, SPIE (2008).
  9. Lehmann, T., Güld, M., Thies, C., Fischer, B., Spitzer, K., Keysers, D., Ney, H., Kohnen, M., Schubert, H., and Wein, B., “Content-based image retrieval in medical applications”, Methods. Inf. Med. 43(4), 354-61 (2004).
  10. Haralick, R., Shanmugam, K., and Dinstein, I., “Textural features for image classification”, IEEE Trans. on Systems, Man, and Cybertinetics 3(6), 610-621 (1973).
  11. Galloway, M., “Texture analysis using gray level run lengths”, Computer Graphics and Image Processing 4, 172-179 (1975).
  12. Laine, A. and Fan, J., “Texture classification by wavelet packet signatures”, IEEE Trans. Pattern Anal.Mach. Intell. 15, 1186-1191 (1993).
  13. Mudigonda, N., Rangayyan, R., and Desautels, J., “Gradient and texture analysis for the classification of mammographic masses”, IEEE Trans. Med. Imaging 19, 1032-1043 (2000).
  14. Varela, C., Timp, S., and Karssemeijer, N., “Use of border information in the classification of mammographic masses”, Phys Med Biol 51, 425-441 (2006).
  15. Gupta, S. and Markey, M. K., “Correspondence in texture features between two mammographic views”, Med Phys 32, 1598-1606 (2005).
  16. Mavroforakis, M. E., Georgiou, H. V., Dimitropoulos, N., Cavouras, D., and Theodoridis, S., “Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers”, Artif Intell Med 37, 145-162 (2006).
  17. Huo, Z., Giger, M. L., Vyborny, C. J., Bick, U., Lu, P., Wolverton, D. E., and Schmidt, R. A., “Analysis of spiculation in the computerized classification of mammographic masses”, Med Phys 22, 1569-1579 (1995).
  18. Huo, Z., Giger, M. L., Vyborny, C. J., Wolverton, D. E., Schmidt, R. A., and Doi, K., “Automated computerized classification of malignant and benign masses on digitized mammograms”, Acad Radiol 5, 155-168 (1998).
  19. Huo, Z., Giger, M. L., Vyborny, C. J., Wolverton, D. E., and Metz, C. E., “Computerized classification of benign and malignant masses on digitized mammograms: a study of robustness”, Acad Radiol 7, 1077-1084 (2000).
  20. Zheng, B., Lu, A., Hardesty, L. A., Sumkin, J. H., Hakim, C. M., Ganott, M. A., and Gur, D., “A method to improve visual similarity of breast masses for an interactive computer-aided diagnosis environment”, Med Phys 33, 111-117 (2006).
  21. Sahiner, B., Chan, H., Petrick, N., Helvie, M., and Goodsitt, M., “Computerized characterization of masses on mammograms: the rubber band straightening transform and texture analysis”, Med. Phys. 25(4), 516-526 (1998).
  22. Rangayyan, R. M., El-Faramawy, N. M., Desautels, J. E., and Alim, O. A., “Measures of acutance and shape for classification of breast tumors”, IEEE Trans Med Imaging 16, 799-810 (1997).
  23. Shi, J., Sahiner, B., Chan, H.-P., Ge, J., Hadjiiski, L., Helvie, M. A., Nees, A., Wu, Y.-T., Wei, J., Zhou, C., Zhang, Y., and Cui, J., “Characterization of mammographic masses based on level set segmentation with new image features and patient information”, Med Phys 35, 280-290 (2008).
  24. Rangayyan, R. M., Mudigonda, N. R., and Desautels, J. E., “Boundary modelling and shape analysis methods for classification of mammographic masses”, Med Biol Eng Comput 38, 487-496 (2000).
  25. Karssemeijer, N. and te Brake, G., “Detection of stellate distortions in mammograms”, IEEE Trans. Med.Imaging 15(5), 611-619 (1996).
  26. te Brake, G. and Karssemeijer, N., “Single and multiscale detection of masses in digital mammograms”, IEEE Trans. Med. Imaging 18, 628-639 (1999).
  27. Guido M te Brake, Nico Karssemeijer, and Jan H C L Hendriks. “An automatic method to discriminate malignant masses from normal tissue in digital mammograms”. Phys Med Biol, 45:2843-2857, (2000).
  28. Heath, M., Bowyer, K., Kopans, D., Moore, R., and Kegelmeyer, W., “The digital database for screening mammography”, in
  29. Proc's 5th Int. Workshop on Digital Mammography ], 212-218 (2001).
  30. Butt, M. A. and Maragos, P., “Optimum design of chamfer distance transforms”, IEEE Trans Image Process 7, 1477-1484 (1998).
Index Terms

Computer Science
Information Sciences

Keywords

Breast cancer CAD Mammography Mass Classification Feature extraction