CFP last date
20 January 2025
Reseach Article

Comprehensive Survey of Framework for Web Personalization using Web Mining

by Vikas Verma, A. K. Verma, S. S. Bhatia
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 35 - Number 3
Year of Publication: 2011
Authors: Vikas Verma, A. K. Verma, S. S. Bhatia
10.5120/4382-6066

Vikas Verma, A. K. Verma, S. S. Bhatia . Comprehensive Survey of Framework for Web Personalization using Web Mining. International Journal of Computer Applications. 35, 3 ( December 2011), 23-28. DOI=10.5120/4382-6066

@article{ 10.5120/4382-6066,
author = { Vikas Verma, A. K. Verma, S. S. Bhatia },
title = { Comprehensive Survey of Framework for Web Personalization using Web Mining },
journal = { International Journal of Computer Applications },
issue_date = { December 2011 },
volume = { 35 },
number = { 3 },
month = { December },
year = { 2011 },
issn = { 0975-8887 },
pages = { 23-28 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume35/number3/4382-6066/ },
doi = { 10.5120/4382-6066 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:21:03.506168+05:30
%A Vikas Verma
%A A. K. Verma
%A S. S. Bhatia
%T Comprehensive Survey of Framework for Web Personalization using Web Mining
%J International Journal of Computer Applications
%@ 0975-8887
%V 35
%N 3
%P 23-28
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

World Wide Web is a global village and a rich source of information. The number of users accessing web sites is increasing day by day. For effective and efficient handling, web mining coupled with recommendation techniques provides personalized contents at the disposal of users. Web Mining is an area of Data Mining dealing with the extraction of interesting knowledge from the World Wide Web. While surfing the web sites, users’ interactions with web sites are recorded in web usage file. These Web Logs when mined properly are rich source for Web Personalization. Mining of these Web Logs is referred to as Web Usage Mining. This paper presents a comprehensive survey of over 100 research papers dealing with Web Mining framework.

References
  1. Abraham, A. 2003. Business Intelligence from Web Usage Mining, Journal of Information & Knowledge Management, 2(4), 375-390.
  2. Adda, M., Valtchev, P., Missaoui, R. and Djeraba, C. 2007. Toward Recommendation Based on Ontology-Powered Web-Usage Mining, IEEE Internet Computing, 11(4), 45-52.
  3. Aghabozorgi, S. R. and Wah, T.Y. 2009. Using Incremental Fuzzy Clustering to Web Usage Mining, International Conference of Soft Computing and Pattern Recognition, 653-658.
  4. Baraglia, R. and Palmerini, P. 2002. SUGGEST: a Web usage mining system, International Conference on Information Technology: Coding and Computing, 282-287.
  5. Bayir, A. M., Toroslu, H. I. and Cosar, A. 2006. A New Approach for Reactive Web Usage Data Processing, Proceedings of the 22nd International Conference on Data Engineering Workshops, 44.
  6. Borges, J. and Levene, M. 2000. Data Mining of User Navigation Patterns, 92-111.
  7. Chakrabarti, S. 2000. Data Mining for Hypertext: A Tutorial Survey, SIGKDD Explorations, Knowledge Discovery & Data Mining, 1(2), 1–11.
  8. Chen, J., Yin, J., Tung, A. K. H. and Liu, B. 2004. Discovering Web usage patterns by mining cross-transaction association rules, International Conference on Machine Learning and Cybernetics, 5, 2655-2660.
  9. Cooley, R., Srivastava, J. and Mobasher, B. 1997. Web Mining: Information and Pattern Discovery on the WorldWideWeb, ICTAI’97.
  10. Cowie and Lehner, W. 1996. Information Extraction, ACM, 39(1), 80–91.
  11. Dai, H., Mobasher, B., Luo, T. and Nakagawa, M. 2002. Using Sequential and Non-Sequential Patterns in Predictive Web Usage Mining Tasks, Proceedings of the 2002 IEEE International Conference on Data Mining , 669-672.
  12. Dixit, D. and Kiruthika, M. 2010. Preprocessing of Web Logs, International Journal on Computer Science and Engineering , 2(7), 2447-2452.
  13. Dong, D. M. 2009. Exploration on Web Usage Mining and its Application, International Workshop on Intelligent Systems and Applications, 1-4.
  14. Eirinaki, M and Vazirgiannis, M. 2003. Web Mining for Web Personalization, ACM Transactions on Internet Technologies (ACM TOIT), 3(1), 1 – 27.
  15. Etminani, K., Delui, A. R., Yanehsari, N. R. and Rouhani, M. 2009. Web Usage Mining: Discovery of the Users' Navigational Patterns Using SOM, First International Conference on Networked Digital Technologies, 224-249.
  16. Etzioni 1996. The World-Wide Web: Quagmire or gold mine? ACM, 39(11), 65–68.
  17. Fu, Y., Creado, M. and Ju, C. 2001. Reorganizing websites based on user access patterns, ACM CIKM, 583-585.
  18. Fu, Y. and Shih, Y. M. 2002. A Framework for Personal Web Usage Mining, Proceedings of International Conference on Internet Computing , 595-600.
  19. Han, J. and Kamber, M. 2001. Data Mining: Concepts and techniques, 1st edn. Morgan Kaufmann.
  20. Hogo, M., Snorek, M. and Lingras, P. 2003. Temporal Web usage mining, International Conference on Web Intelligence, 450-453.
  21. Inbarani, H. H. and Thangavel, T. 2006. Clickstream Intelligent Clustering Using Accelerated Ant Colony Algorithm, ADCOM , 129-134.
  22. Inbarani, H. H., Thangavel, K. and Pethalakshmi, A . 2007. Rough Set Based Feature Selection for Web Usage Mining, International Conference on Conference on Computational Intelligence and Multimedia Applications, 1, 33-38.
  23. Iváncsy, R., and Vajk, I. 2005 a. Efficient Sequential Pattern Mining Algorithms, WSEAS Transactions on Computers, 4(2), 96-101.
  24. Iváncsy, R., and Vajk, I. 2005 b. PD-Tree: A New Approach to Subtree Discovery, WSEAS Transactions on Information Science and Applications, 2(11), 1772-1779.
  25. Jalali, M., Mustapha, N., Sulaiman, N. M., and Mamat, A. 2007. An Architecture for Online Predicting in Web Usage Mining System, The 2nd National Intelligent Systems And Information Technology Symposium, ISITS’07, ITMA -UPM, Malaysia, 33-38.
  26. Jalali, M., Mustapha, N., Sulaiman, N. B. and Mamat, A. 2008). A Web Usage Mining Approach Based on LCS Algorithm in Online Predicting Recommendation Systems, 12th International Conference Information Visualisation, 302-307.
  27. Joshi, A. and Krishnapuram, R. 2000. On Mining Web Access Logs, ACM SIGMOD, 63-69.
  28. Kitsuregawa, M., Shintani, T. and Pramudiono, I. 2001. Web mining and its SQL based parallel execution, IEEE Workshop on Information Technology for Virtual Enterprises, 128.
  29. Kosala, R., Blockeel, H. and Neven, F. 2002. An overview of Web Mining, J. Meij, Editor, Deling with Data Flood: Mining Data, Text and Multimedia, 480-497.
  30. Kosala, R. and Blockeel, H. 2000. Web Mining Research: A Survey, SIGKDD Explorations, 2(1), 1-15.
  31. 31] Labroche, N., Lesot, M. J. and Yaffi, L. 2007. A New Web Usage Mining and Visualization Tool, 19th IEEE International Conference on Tools with Artificial Intelligence, 1, 321-328.
  32. Lee, H. C. and Fu, H. Y. 2008. Web Usage Mining Based on Clustering of Browsing Features, Eighth International Conference on Intelligent Systems Design and Applications, 1, 281-286.
  33. Li, Y., Feng, B. and Mao, Q. 2008. Research on Path Completion Technique in Web Usage Mining, International Symposium on Computer Science and Computational Technology, 1, 554-559.
  34. Linoff, G. S. and Berry, A. M. 2001. Mining the Web, 1st edn. John Wiley and Sons.
  35. Mahanta, N.A. 2008. Web Mining: Application of Data Mining, NCKM, 111-116.
  36. Maratea, A. and Petrosino, A. 2009. An Heuristic Approach to Page Recommendation in Web Usage Mining, Ninth International Conference on Intelligent Systems Design and Applications, 1043-1048.
  37. Masseglia, F., Poncelet, P. and Teisseire, M. 1999. Using data mining techniques on web access logs to dynamically improve hypertext structure, ACM SigWeb Letters, 8(3), 13-19.
  38. Mobasher, B. 1999. WebPersonalizer: A Server-Side Recommender System Based on Web Usage Mining, 9th Workshop on Information Technologies and Systems, 2003-2004.
  39. Mobasher, B., Cooley, R. and Srivastava, J. 1999. Creating adaptive web sites through usage based clustering of URLs, KDEX'99, 32-37.
  40. Mobasher, B., Dai, H., Luo,T. and Nakagawa, M. 2001. Elective personalization based on association rule discovery from web usage data, WIDM01, Atlanta, 9-15.
  41. Mobasher, B., Dai, H., Luo, T. and Nakagawa, M. 2002. Discovery and Evaluation of Aggregate Usage Profiles for Web Personalization, Journal of Data Mining and Knowledge Discovery, 6, 61-82.
  42. Nasraoui, O., Soliman, M., Saka, E., Badia, A. and Germain, R. 2008. A Web Usage Mining Framework for Mining Evolving User Profiles in Dynamic Web Sites, IEEE Transactions on Knowledge and Data Engineering, 20(2), 202-215.
  43. Nina, S. P., Rahman, M., Bhuiyan, K. I. and Ahmed, K. 2009. Pattern Discovery of Web Usage Mining, International Conference on Computer Technology and Development, 1, 499-503.
  44. Patel, K. R., Patel, S. A., Patel, R. N. 2009. Markov Model Analysis: Knowledge Discovery in Web, PIMT Journal of Research.
  45. Perkowitz, M. and Etzioni, O. 1999. Towards Adaptive Web sites: Conceptual framework and case study, Artificial Intelligence, 118, 245–275.
  46. Petrounias, I., Tseng, A., Kolev, B., Chountas, P. and Kodogiannis, V. 2004. An Intuitionistic Fuzzy Component Based Approach for Identifying Web Usage Patterns, Second IEEE International Conference on Intelligent Systems.
  47. Raju, T. G., Satyanarayana, S. P. 2008. Knowledge Discovery from Web Usage Data: Complete Preprocessing Methodology, IJCSNS, International Journal of Computer Science and Network Security, 8(1).
  48. Shinde, S. K. and Kulkarni, U. V. 2008. A New Approach for on Line Recommender System in Web Usage Mining, International Conference on Advanced Computer Theory and Engineering, 973- 977.
  49. Spiliopoulou, M., Pohle, C., and Faulstich, C. L. 2000. Improving the effectiveness of a website with web usage mining, In Advances in Web Usage Analysis and User Profiling, Berlin, Springer, 14162, 2000.
  50. Srikant, R., Yang, Y. 2001. Mining web logs to improve website organization, The 10th International World Wide Web Conference, Hong Kong, 430-437.
  51. Suneetha K. R. and Krishnamoorthi, R. 2009. Data Preprocessing and Easy Access Retrieval of Data through Data Ware House, World Congress on Engineering and Computer Science, 1, 306-311.
  52. Tzekou, P., Stamou, S., Kozanidis, L. and Zotos, N. 2007. Effective Site Customization Based on Web Semantics and Usage Mining, Third International IEEE Conference on Signal-Image Technologies and Internet-Based System, 51-59.
  53. Vellingiri, J. and Pandian, C. S. 2011. A Survey on Web Usage Mining, Global Journal of Computer Science and Technology, 11(4), 67-72.
  54. Wang, S. and She, L. 2009. Algorithm Research on User Interests Extracting via Web Log Data, International Conference on Web Information Systems and Mining, 93-97.
  55. Wang, X., Ouyang, Y., Hu, X. and Zhang, Y. 2004. Discovery of user frequent access patterns on Web usage mining, The 8th International Conference on Computer Supported Cooperative Work in Design, 1, 765-769.
  56. Wu, H. C., Wu, L.Y., Chang, M.Y. and Hung, H.M. 2010: Web Usage Mining on the Sequences of Clicking Patterns in a Grid Computing Environment, ICMLC, 6, 2909-2914.
  57. Wu, H. Y. and Chen, P. L. A. 2002. Prediction of Web Page Accesses by Proxy Server Log, World Wide Web: Internet and Web Information Systems, 5, 67–88.
  58. Wu, H. E., Ng, K. M. and Huang, Z.J. 2004. A Data Warehousing and Data Mining Framework for Web Usage Management, Communications in Information and Systems International Press, 4(4), 301-324.
  59. Wu, K. L., Yu, P. S. and Ballman, A. 1998. SpeedTracer: A Web usage mining and analysis tool, IBM Systems Journal, 37(1), 89-105.
  60. Yen, J. S., Lee, S. Y. and Hsieh, C. M. 2005. An Efficient Incremental Algorithm for Mining Web Traversal Patterns, ICEBE, 274-281.
  61. Zaıane, R. 2001. Building Virtual Web Views, Data and Knowledge Engineering, 39, 143–163.
  62. Zaki, J. M., Punin, R. J., Krishnamoorthy, S. M. 2001. LOGML: Log Markup Language for Web Usage Mining, WEBKDD, 88-112.
  63. Zhang, J., Zhao, P., Shang, L. and Wang, L. 2009: Web Usage Mining Based On Fuzzy Clustering in Identifying Target Group, International Colloquium on Computing, Communication, Control, and Management, 4, 209-212.
  64. 64] Zhang, H. and Liang, W. 2004. An intelligent algorithm of data pre-processing in Web usage mining, Fifth World Congress on Intelligent Control and Automation, 4, 3119- 3123.
  65. 65] Zhang, Y., Lidai, Zhou, J. Z. 2010. A New Perspective of Web Usage Mining: Using Enterprise Proxy Log, International Conference on Web Information Systems and Mining, 38-42.
Index Terms

Computer Science
Information Sciences

Keywords

Web Mining Web Log Mining Web Personalization