CFP last date
20 January 2025
Reseach Article

Legacy of Footprints- A Review

by V. D. Ambeth Kumar, Dr. M. Ramakrishnan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 35 - Number 11
Year of Publication: 2011
Authors: V. D. Ambeth Kumar, Dr. M. Ramakrishnan
10.5120/4445-6205

V. D. Ambeth Kumar, Dr. M. Ramakrishnan . Legacy of Footprints- A Review. International Journal of Computer Applications. 35, 11 ( December 2011), 9-16. DOI=10.5120/4445-6205

@article{ 10.5120/4445-6205,
author = { V. D. Ambeth Kumar, Dr. M. Ramakrishnan },
title = { Legacy of Footprints- A Review },
journal = { International Journal of Computer Applications },
issue_date = { December 2011 },
volume = { 35 },
number = { 11 },
month = { December },
year = { 2011 },
issn = { 0975-8887 },
pages = { 9-16 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume35/number11/4445-6205/ },
doi = { 10.5120/4445-6205 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:21:41.834233+05:30
%A V. D. Ambeth Kumar
%A Dr. M. Ramakrishnan
%T Legacy of Footprints- A Review
%J International Journal of Computer Applications
%@ 0975-8887
%V 35
%N 11
%P 9-16
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Over the last decade footprint feature extraction has been actively researched for footprint recognition. This paper provides an up-to-date review of major human footprint recognition research. In Earlier sections, we have presented an overview of footprint recognition and its applications. In later sections, literature review of the most recent footprint recognition technique is presented. The most prominent feature extraction and the techniques are also given. Finally, we have summarized all research results discussed.

References
  1. R. Sukthankar and R. Stockton, “Argus: the digital doorman”, IEEE Intelligent Systems Vol. 16 Issue 2, 2001
  2. S. Liu and M. Silverman, “A practical guide to biometric security technology”, IEEE IT Pro, pp.27-32, Jan. /Feb., 2001.
  3. Robert B.Kennedy,”Uniqueness of bare feet and its use as a possible means of identification”, Elsevier science Ireland Ltd., 1996.
  4. L.M.Robbins,”The individuality of human footprints”, J.of.forensic science, vol-23, no-4, October 1978.
  5. K. Nakajima, Y. Mizukami, K. Tanaka, and T. Tamura, “Foot-Based Personal Recognition”, IEEE: Tr. On Biomedical Engineering, Vol. 47, No. 11, 2000.
  6. Dynamic-Footprint based Person Identification using Mat-type Pressure Sensor in-Woo Jungl, Zeungnam Bien', Sang-Wan Lee', Tomomasa Sato', IEEE 2003.
  7. J.-W. Jung, T. Sato, and Z. Bien, “unconstrained person recognition method using dynamic footprint”, Proc. of Int. Conf. on Fuzzy Information Processing 2003, Vol II,pp.53 1-536,2003.
  8. Robbins.L.M., "Estimating Height and Weight from Size of Footprints". Journal of Forensic Sciences.Vol.31; No.1, Jan.1986, pp.143-152.
  9. Macdonell,W.R.; "On Criminal Anthropometry and the Identification of Criminals." Biometrika. Vol. 1, No2.Jan1902, pp. 177-227.
  10. Topinard.P.,L'Anthropologie,C.Reinwald,Paris 1976.
  11. Martin, R.,Lehrbuch der Anthropologie. Gustav Fischer,Jena, 1914,1928.
  12. Oliver.G.,Anatomie Anthropologique. Vigot Freres.Paris,1965.
  13. J.Nesbitt,Prisoner of the night .Reader's Digest, July(1962) 28-30.
  14. J.G. Fernadez,The Classification of footprints of new born children. Int.Crim.Police Rev., 64(1953) 3,52 and 65.
  15. Rutishauser. H.E.,"Prediction of height from Foot Length: Use of measurement in Field Surveys ",Archieves of Disease in Childhood.Vol.43,No.229,June 1968,pp.310-312.
  16. Andreson,M.Blais,M.,and Green,W.T..Growth of the Normal Foot During Childhood and Adolesence", American Journal of Physical Anthropology,Vol.14, No.2.June 1956. pp 287- 308.
  17. J.Hong and H. J. Wolfson, “An Improved Model-Based Matching Method Using Footprints,” Robotics Report 137, Computer Science Div., Courant Inst. of Math., N W ,1987.
  18. Jang, J. R.: ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst., Man, Cybern., vol.23 pp. 665¨C685, 1993.
  19. Kyoko Sudo, Junji Yamato and Akira Tomono, “Determining Gender Using Multiple Sensors,” Proc. Information Integration Workshop, Vol. TR-950 10, pp. 188-203, 1995.
  20. M. Chester, Neural Networks: A Tutorial, Prentice Hall, 1993.
  21. T. Kohonen, “Self-Organizing Maps,” Springer Series in Information Sciences, 3rd edition, 2001.
  22. B.S. Shin, E.Y. Cha, Y.W. Woo and R. Klette, “Segmentation of Scanned Insect Footprints Using ART2 for Threshold Selection,” LNCS 4872, Springer-Verlag, pp.311-320, 2007.
  23. A. Kadyrov and M. Petrou,“The Trace Transform and Its Applications,” IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.23, No.8, pp.811-828, 2001.
  24. J. Yun, S. Lee,W.Woo, and J. Ryu, “The user identification system using walking pattern over the ubiFloor,” in Proc. International Conference on Computational Intelligence and Security, Xi’an, China, 2005, pp. 949– 956.
  25. Shu Yang, Cai-rong Wang, Xue-ying Wang Software College of ShenYang Normal University, ShenYang, 110034, China,2007.
  26. P. Huang, C. Harris, and M. Nixon, “Human gait recognition in canonical space using temporal templates,” IEE Proc. Vision Image and Signal Processing, vol. 146, no. 2, pp. 93–100, 1999.
  27. R. Coifman and M. Wickerhauser, “Entropy-based algorithms for best basis selection,” IEEE Trans. Inform. Theory, vol. 38, pp. 713–718, Mar. 1992.
  28. R. R. Coifman and L. Donoho, “Translation Invariant Denoising,” Dept. Statist., Stanford Univ., Tech. Rep. 475, 1995.
  29. K. Ramchandram and M. Vetterli, “Best wavelet packet bases in a ratedistortion sense,” IEEE Trans. Image Processing, vol. 2, pp. 160–175, Apr. 1993.
  30. D. L. Donoho and P. B. Stark, “Uncertainty principles and signal recovery,” SIAM J. Appl. Math., vol. 49/3, pp. 906–931, June 1989.
  31. M. Elad and A. M. Bruckstein, “On sparse signal representations,” in IEEE Int. Conf. Image Processing, Thessaloniki, Greece, Oct. 2001.
  32. M. M. Goodwin and M. Vetterli, “Matching pursuit and atomic signal models based on recursive filter banks,” IEEE Trans. Signal Processing, vol. 47, pp. 1890–1902, July 1999.
  33. V.D.Ambeth Kumar and M.Ramakrishan ,”Footprint Recognition using Modified Sequential Haar Energy Transform (MSHET)”, Intl. Journal of Computer science Issuse,Vol-7,Issuse 3,No.5,May 2010.
Index Terms

Computer Science
Information Sciences

Keywords

Euclidean distance Hidden Markov Model MHE Matching Algorithm