CFP last date
20 December 2024
Reseach Article

Homogenization of a Composite Periodic Structure in the Case of Composite Plate

by Saleh Alsubari, Hassan Chaffoui
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 34 - Number 1
Year of Publication: 2011
Authors: Saleh Alsubari, Hassan Chaffoui
10.5120/4064-5837

Saleh Alsubari, Hassan Chaffoui . Homogenization of a Composite Periodic Structure in the Case of Composite Plate. International Journal of Computer Applications. 34, 1 ( November 2011), 28-33. DOI=10.5120/4064-5837

@article{ 10.5120/4064-5837,
author = { Saleh Alsubari, Hassan Chaffoui },
title = { Homogenization of a Composite Periodic Structure in the Case of Composite Plate },
journal = { International Journal of Computer Applications },
issue_date = { November 2011 },
volume = { 34 },
number = { 1 },
month = { November },
year = { 2011 },
issn = { 0975-8887 },
pages = { 28-33 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume34/number1/4064-5837/ },
doi = { 10.5120/4064-5837 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:19:58.190543+05:30
%A Saleh Alsubari
%A Hassan Chaffoui
%T Homogenization of a Composite Periodic Structure in the Case of Composite Plate
%J International Journal of Computer Applications
%@ 0975-8887
%V 34
%N 1
%P 28-33
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This work is consecrated to the investigation of mechanical behavior of a composite plate containing some periodic distributions and no symmetrical with regard to the average plan. The choice of this model is characterized by two important parameters: thickness of the plate and the size of the period. It is supposed that the thickness is smaller compared to the period dimension. The obtained results indicate that the homogenisation technique is able to predict the behaviour of periodic composites. The equivalent elasticity coefficients and micro-constraints were analytically calculated, then by finite elements in the basic cell level. We have shown that the complexity of numerical modelling can be solved by choosing a plan model, which gives the same results as a three-dimensional model

References
  1. M. Artola, G. Duvaut, Homogenisation of a reinforced plate , C. R. A. S., Paris, Srie A, T.287, 1977, pp. 710-713
  2. H. Chaffoui, D. Play. study of the behavior for the structural design textiles. Application to the conveying belts , rev. Euro of finite element, V. 7, N 6, 1998, pp. 737-754.
  3. H. Chaffoui, M. EL Hammouti, A. Yeznasni , D. Play. Homogenisation of the plates sandwiches, non-symmetrical compared to the average plan, rev. of the composites and the mat Advanced , V. 9, N 2, 2000, pp. 219-238.
  4. P. G. Ciarlet, S. Kesaven. Two-dimensional approximation of three-dimensional eigenvalue problem in plate theory, Comput. Meth. in Appl. Mech. and Engng., 26 (1981), pp.145-172
  5. T. W. Chou, T. Ishikawa. Analysis and modelling of two dimensional fabric composites. Elsevier, 1989, pp. 209-264.
  6. G Duvaut, A. M. Metellus. Homogenisation of a thin section in inflection of periodic and symmetrical structure. C. R . Acad. Sci . Paris, 1976, Series A, T 283, pp. 947-950.
  7. Harald Berger, Sreedhar , Kari, Ulrich Gabbert. An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. international journal of solids and structure 42 (2005),pp. 5692-5714
  8. B. Hassani, E. Hinton , A review of homogenization and topology optimization I-homogenization theory for media with periodic Structure . Computers and Structures 69 (1998) ,pp. 707-717
  9. Jorg. Hohe, A direct homogenisation approach for determination of the stiffness matrix for micro-heterogeneous plats with application to sandwich panels . Elsevier composites: part B 34(2003) pp 615-626
  10. S. Alsubari, H.Chaffoui Comparison of the elastic coefficients and Calculation Models of the Mechanical Behavior one- Dimensional Composites IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, September 2011,pp 63-67. Online www.IJCSI.org
  11. F. Lene, Contribution to the study of composite materials and their damage . Thesis of doctorate. State, Paris VI, 1982.
  12. K. H. Lo, R. M. Christensen, E. M.Wu, A Higher-Order Theory of Plate Deformation, ASME J. App. Mech., V. 18, 1977, December, pp. 663-676
  13. Mihaela Racila and Lamine Boubakar, Composites piezoelectric and asymptotic-A homogenization approaches numerical. Annals of the University of Craiova, Mathematics and Computer Series Science . Volume 37(4), 2010, pp. 99-124.
  14. S. Alsubari, H. Chaffoui, Etude du comportement mécanique d’une plaque composite à renforts textiles « Homogénéisation par sous domaine », Journée de Mécanique des Structures, JMS2008, 26 Novembre 2008, FST Settat, pp 1-6.
  15. T.M.H. Nguyen , Blond , A. Gasser,T. Pritl, Mechanical homogenisation of masonry wall without mortar . European Journal of Mechanics A/solids 28 (2009) ,pp. 535-544.
Index Terms

Computer Science
Information Sciences

Keywords

Homogenisation Method Finite element method Composite plate