CFP last date
20 January 2025
Call for Paper
February Edition
IJCA solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 20 January 2025

Submit your paper
Know more
Reseach Article

A Comparative Study of Convective Parameterization Schemes in WRF-NMM Model

by Litta A. J., Sumam Mary Idicula, U. C. Mohanty
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 33 - Number 6
Year of Publication: 2011
Authors: Litta A. J., Sumam Mary Idicula, U. C. Mohanty
10.5120/4026-5739

Litta A. J., Sumam Mary Idicula, U. C. Mohanty . A Comparative Study of Convective Parameterization Schemes in WRF-NMM Model. International Journal of Computer Applications. 33, 6 ( November 2011), 32-40. DOI=10.5120/4026-5739

@article{ 10.5120/4026-5739,
author = { Litta A. J., Sumam Mary Idicula, U. C. Mohanty },
title = { A Comparative Study of Convective Parameterization Schemes in WRF-NMM Model },
journal = { International Journal of Computer Applications },
issue_date = { November 2011 },
volume = { 33 },
number = { 6 },
month = { November },
year = { 2011 },
issn = { 0975-8887 },
pages = { 32-40 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume33/number6/4026-5739/ },
doi = { 10.5120/4026-5739 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:19:28.321621+05:30
%A Litta A. J.
%A Sumam Mary Idicula
%A U. C. Mohanty
%T A Comparative Study of Convective Parameterization Schemes in WRF-NMM Model
%J International Journal of Computer Applications
%@ 0975-8887
%V 33
%N 6
%P 32-40
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Severe local storms, including tornadoes, damaging hail and wind gusts, frequently occur over the eastern and northeastern states of India during the pre-monsoon season (March-May). Forecasting thunderstorms is one of the most difficult tasks in weather prediction, due to their rather small spatial and temporal extension and the inherent non-linearity of their dynamics and physics. In this paper, sensitivity experiments are conducted with the WRF-NMM model to test the impact of convective parameterization schemes on simulating severe thunderstorms that occurred over Kolkata on 20 May 2006 and 21 May 2007 and validated the model results with observation. In addition, a simulation without convective parameterization scheme was performed for each case to determine if the model could simulate the convection explicitly. A statistical analysis based on mean absolute error, root mean square error and correlation coefficient is performed for comparisons between the simulated and observed data with different convective schemes. This study shows that the prediction of thunderstorm affected parameters is sensitive to convective schemes. The Grell-Devenyi cloud ensemble convective scheme is well simulated the thunderstorm activities in terms of time, intensity and the region of occurrence of the events as compared to other convective schemes and also explicit scheme.

References
  1. Weiss, S. J., Bright, D. R., Kain, J. S., Levit, J. J., Pyle, M. E., Janjic, Z. I., Ferrier, B. S., and Du, J. 2006. Complementary Use of Short-range Ensemble and 4.55 KM WRF-NMM Model Guidance for Severe Weather Forecasting at the Storm Prediction Centre. Preprints, 23rd Conf. Severe Local Storms, ST. Louis MO, Amer. Meteor. Soc.
  2. Grell, G. A., and Devenyi, D. 2002 A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letter. 29, Article 1963
  3. Yang, M. J., and Tung, Q. C. 2003 Evaluation of rainfall forecasts over Taiwan by four cumulus parameterization schemes. J. Meteor. Soc. Japan. 81, 1163-1183
  4. Gallus, W. A. 1999. Eta simulations of three extreme precipitation events: Sensitivity to resolution and convective parameterization. Weather and Forecasting. 14, 405-426
  5. Dudhia, J., Weisman, M. L., Skamarock, W. C., and Wang, W. 2003. Studies of heavy rainfall in the United States with WRF. Proceedings, Int. Workshop on NWP Models for Heavy Precipitation in Asia and Pacific Areas, Tokyo, Japan, 84-89
  6. Mohanty, U. C. et al. 2006 Weather Summary Pilot Experiment of Severe Thunderstorms-Observational and Regional Modeling (STORM) Programme – 2006
  7. Mohanty, U. C. et al. 2007 Weather Summary Pilot Experiment of Severe Thunderstorms-Observational and Regional Modeling (STORM) Programme – 2007
  8. Janjic. Z. I. 2003. A Nonhydrostatic Model Based on a New Approach. Meteorology and Atmospheric Physics. 82, 271-285
  9. Litta, A. J., and Mohanty, U. C. 2008. Simulation of a severe thunderstorm event during the field experiment of STORM programme 2006, using WRF-NMM model. Current Science. 95, 204-215
  10. Litta, A. J., Mohanty, U. C., and Sumam M. I. 2009. Simulation of Severe Squall Line over Kolkata using WRF-NMM model. Lectures on Modeling and Simulation. 10(1), 73-83
  11. Litta, A. J., Mohanty, U. C., and Bhan, S. C. 2010 Numerical Simulation of a Tornado over Ludhiana (India) using WRF-NMM model. Meteorological Applications. 16, 164-175
  12. Stensrud, D. J., Bao, J. W., and Warner, T. T. 2000. Using initial condition and model physics perturbationsin short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev. 128, 2077–2107
  13. Kain, J. S. 2004. The Kain–Fritsch Convective Parameterization: An Update. Journal of Applied Meteorology. 43 (1), 170–181
  14. Kain, J. S., and Fritsch, J. M. 1993. Convective parameterization for mesoscale models: The Kain-Fritcsh scheme. The representation of cumulus convection in numerical models, K.A. Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc. 246
  15. Janjic, Z. I. 1996b. The Surface Layer in the NCEP Eta Model. 11th Conf. on NWP, Norfolk, VA, American Meteorological Society, 354–355
  16. Janjic, Z. I. 2000. Comments on “Development and Evaluation of a Convection Scheme for Use in Climate Models. J. Atmos. Sci. 57, 3686
  17. Arakawa, A., and Schubert, W. H. 1974. Interaction of a cumulus cloud ensemble with the large scale environment. Part I. J. Atmos. Sci. 31, 674-701
  18. Grell, G. A. 1993. Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Mon. Wea. Rev. 121, 764-787
  19. Wang, W., and Seaman, N. L. 1997. A comparison study of convective parameterization schemes in a mesoscale model. Mon Wea Rev. 125, 252–278
  20. Kuo, Y. H., Reed, R. J., and Liu, Y. 1996. The ERICA IOP 5 Storm. Part III: mesoscale cyclogenesis and precipitation parameterization. Amer Meteor Soc. 124, 1409–1434
  21. Kerkhoven, E., Gan, T. Y., Shiiba, M., Reuter, G., and Takana, K. 2006. A comparison of cumulus parameterization schemes in a numerical weather prediction model for a monsoon rainfall event. Hydrol Process. 20, 1961–1978
  22. Schwarzkopf, M. D., and Fels, S. B. 1991 The simplified exchange method revisited: An accurate, rapid method for computations of infrared cooling rates and fluxes. J. Geophys. Res. 96, 9075-9096
  23. Lacis, A. A., and Hansen, J. E. 1974. A parameterization for the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci. 31, 118–133
  24. Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., and Tarpley, J. D. 2003. Implementation of NOAH land surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res. 108, 22, 8851
  25. Janjic, Z. I. 2002b. Nonsingular Implementation of the Mellor–Yamada Level 2.5 Scheme in the NCEP Meso model, NCEP Office Note, No. 437, 61
  26. Ferrier, B. S., Lin, Y., Black, T., Rogers, E., and DiMego, G. 2002. Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model. Preprints, 15th Conference on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc. 280-283
  27. Janjic, Z. I. 1994. The step–mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev. 122, 927–945
  28. Johns, R. H., and Doswell, C. A. 1992. Severe local storms forecasting. Weather and Forecasting. 7, 588-612
  29. McNulty, R. P. 1995. Severe and Convective Weather: A Central Region Forecasting Challenge. Weather and Forecasting. 10, 187-202
  30. Air Weather Service Technical Report 79/006. 1990. The use of the skew T, Log P diagram in analysis and forecasting. Air Weather Service, Scott AFB, Illinois
  31. Miller, R. C. 1972. Notes on Analysis and Severe Storm Forecasting Procedures of the Air Force Global Weather Central AWS TR 200 (revised) Air Weather Service Scott Air Force Base. Illinois.
Index Terms

Computer Science
Information Sciences

Keywords

Thunderstorm Computational model Simulation Precipitation Statistical analysis Convective parameterization scheme.