CFP last date
20 December 2024
Reseach Article

Article:Combined Adaptive Observer-Controller for Lipschitz Nonlinear Systems

by Elleuch Dorsaf, Damak Tarak
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 32 - Number 5
Year of Publication: 2011
Authors: Elleuch Dorsaf, Damak Tarak
10.5120/3902-5469

Elleuch Dorsaf, Damak Tarak . Article:Combined Adaptive Observer-Controller for Lipschitz Nonlinear Systems. International Journal of Computer Applications. 32, 5 ( October 2011), 38-47. DOI=10.5120/3902-5469

@article{ 10.5120/3902-5469,
author = { Elleuch Dorsaf, Damak Tarak },
title = { Article:Combined Adaptive Observer-Controller for Lipschitz Nonlinear Systems },
journal = { International Journal of Computer Applications },
issue_date = { October 2011 },
volume = { 32 },
number = { 5 },
month = { October },
year = { 2011 },
issn = { 0975-8887 },
pages = { 38-47 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume32/number5/3902-5469/ },
doi = { 10.5120/3902-5469 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:18:24.743729+05:30
%A Elleuch Dorsaf
%A Damak Tarak
%T Article:Combined Adaptive Observer-Controller for Lipschitz Nonlinear Systems
%J International Journal of Computer Applications
%@ 0975-8887
%V 32
%N 5
%P 38-47
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A combination between an adaptive sliding mode observer and a backstepping sliding mode controller is designed for a Lipschitz nonlinear system. This combination guaranties the tracking of trajectory, estimation of both the unmeasured state and the unknown parameters. A parameter variation margin is defined for that the combination is robust. The simulation results prove the combination robustness when the parameters are constants or varied in a defined margin.

References
  1. A. Benallegue, A. Mokhtari and L. Fridman “High-order sliding-mode observer for a quadrotor UAV” International Journal of Robust and Nonlinear Control, 2007
  2. M. Bahrami, B. Ebrahimi and G. R. Ansarifar “Sliding Mode Observer and Control Design with Adaptive Parameter Estimation for a Supersonic Flight Vehicle” International Journal of Aerospace Engineering, 2010
  3. Saadaoui,H.,De leon,J.,djemai,M. and Barbo,J.P “High order sliding mode and adaptive observers for a class of switched systems with unknown parameter : A comparative study” Proceeding of the 45th IEEE conference on decision and control, December 13-15,San diego ,CA , USA, 2006.
  4. Elleuch,D.and Damak,T “Adaptive sliding mode observer for Lipchitz nonlinear systems with varying parameters” 10th International conference on Sciences and Techniques of Automatic control & computer engineering, December 20-22, Hammamet, Tunisia, 2009, pp.1821–1833.
  5. Antonio Ficola, Michele La Cava “A sliding mode controller for a two-joint robot with an elastic link” Mathematics and Computers in Simulation , vol 41, 1996, pp: 559-569
  6. Ming Chang Pai “Design of adaptive sliding mode controller for robust tracking and model following” Journal of the Franklin Institute vol 347, 2010, pp:1837–1849
  7. K B Mohanty “A Fuzzy Sliding Mode Controller for a Field-Oriented Induction Motor Drive” Journal of the institution of engineers (India) vol 86,2005, pp:160-165
  8. S. Laghrouche, F. Plestan and A. Glumineau “A higher order sliding mode controller for a class of MIMO nonlinear systems: application to PM synchronous motor control” Proceeding in the American control conference Boston Massachusetts, June 30-July 2 , 2004.
  9. A.Ferrara, L.Giacomini “On modular backstepping design with second order sliding modes” Automatica, vol 37, 2001, pp: 129-135.
  10. Chia-Hua Lua, Yean-Ren Hwanga, Yu-Ta Shena “Backstepping sliding mode tracking control of a vane-type air motor X–Y table motion system” ISA Transactions, 2010
  11. A.J. Koshkouei, K. Burnham and A.Zinober ”Modern Sliding Mode Control Theory”, Springer-Verlag Berlin Heidelberg,pp:269-290, 2008
  12. Jing Zhou, ChangyunWen “Adaptive Backstepping Control of Uncertain Systems Nonsmooth Nonlinearities, Interactions or Time-Variations” Lecture Notes in Control and Information Sciences, Springer-Verlag Berlin Heidelberg, 2008
  13. K.C. Veluvolu, Y.C. Soh “ nonlinear sliding mode state and unknown input estimations : a new perspective” Proceeding of the international conference on advances control and optimization of dynamical systems, 2007
  14. A.M. Pertew H.J. Marquez and Q. Zhao “design of unknown input observers for Lipschitz nonlinear systems” American control conference, USA, June 8-10, 2005.
  15. J.M. Daly, D.W.L. Wang “ output feedback sliding mode control in the presence of unknown disturbances” systems and control letters vol 58, 2009, pp:188-193.
  16. P. Batista, C. Silvestre and P. Oliveira “ observer design for a class of kinematic systems” proceeding of the 46th IEEE conference on decision and control, New Orleans, L.A, USA, Dec. 12-14, 2007.
  17. H.L.Choi, J.T.Lim “Output feedback stabilization for a class of lipschitz nonlinear systems” The institute of electronics, information and communication engineers trans. fundamentals, vol. E88-A, N°2, February 2005.
  18. P.R.Pagilla and Y.Zhu “controller and observer design for Lipschitz nonlinear systems” Proceeding of the American control conference, Boston Massachusetts, June 30-July 2, 2004.
  19. H.Saadaoui, De leon, M.djemai, J.P Barbo “High order sliding mode and adaptive observers for a class of switched systems with unknown parameter: A comparative study’’. Proceeding of the 45th IEEE conference on decision and control san diego ,CA , USA. December 13-15 2006.
  20. Y. M. Cho and R.Rajamani “A systematic approach to adaptive synthesis for nonlinear systems” IEEE 1995 pp 478-482
Index Terms

Computer Science
Information Sciences

Keywords

backstepping sliding mode observer controller adaptation law lipschitz systems