CFP last date
20 January 2025
Reseach Article

Article:Classification of 3D Magnetic Resonance Images of Brain using Discrete Wavelet Transform

by M.M.Patil, A.R.Yardi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 31 - Number 7
Year of Publication: 2011
Authors: M.M.Patil, A.R.Yardi
10.5120/3837-5333

M.M.Patil, A.R.Yardi . Article:Classification of 3D Magnetic Resonance Images of Brain using Discrete Wavelet Transform. International Journal of Computer Applications. 31, 7 ( October 2011), 23-27. DOI=10.5120/3837-5333

@article{ 10.5120/3837-5333,
author = { M.M.Patil, A.R.Yardi },
title = { Article:Classification of 3D Magnetic Resonance Images of Brain using Discrete Wavelet Transform },
journal = { International Journal of Computer Applications },
issue_date = { October 2011 },
volume = { 31 },
number = { 7 },
month = { October },
year = { 2011 },
issn = { 0975-8887 },
pages = { 23-27 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume31/number7/3837-5333/ },
doi = { 10.5120/3837-5333 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:17:43.485789+05:30
%A M.M.Patil
%A A.R.Yardi
%T Article:Classification of 3D Magnetic Resonance Images of Brain using Discrete Wavelet Transform
%J International Journal of Computer Applications
%@ 0975-8887
%V 31
%N 7
%P 23-27
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Presented work is a feature-extraction and classification study for Alzheimer’s disease (AD), Mild Cognitive Impaired (MCI) and Normal subjects. The proposed technique consists of three stages, namely, normalization of 3D MRI, feature extraction, and classification. In the first stage, we have normalized 3D MR images using VBM analysis, spatially filtered and slice averaged in order to obtain 2D MR slice. In the second stage, obtained the features related to MRI images using discrete wavelet transformation (DWT) with mother wavelets Haar and Daubechies. In the classification stage, a classifier based on feed forward backpropagation artificial neural network (FP-ANN). Classification is obtained with accuracies of 74% and 67% using Daubechies wavelet and Haar wavelet respectively. Used subjects from the ADNI database.

References
  1. C.P. Ferri, M. Prince, C. Brayne, H. Brodaty, L. Fratiglioni, M. Ganguli, K. Hall, K. Hasegawa, H. Hendrie, Y. Huang, A. Jorm, C. Mathers, P.R. Menezes, E. Rimmer, M. Scazufca, “Global prevalence of dementia”: a Delphi consensus study, The Lancet 366 (9503) (2006) 2112–2117.
  2. Leow, A. Klunder, C. Jack Jr., A. Toga, A. Dale, M. Bernstein, P. Britson, J. Gunter,Ward, J. Whitwell, B. Borowski, A. Fleisher, N. Fox, D. Harvey, J. Kornak, N. Schuff, C. Studholme, G. Alexander, M. Weiner, P. Thompson, “Longitudinal stability of MRI for mapping brain change using tensor based morphometry”, NeuroImage 31 (2006) 627–640.
  3. Y. Unal, H. E. Kocer, H.E. Akkurt, “Automatic Diagnosis of Intervertebral Degenerative Disk Disease Using Artificial Neural Network”, 6th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, Elazig, Turkey
  4. Madhubanti Maitra, Amitava Chatterjee, “A Slantlet transform based intelligent system for magnetic resonance brain image classification”, Biomedical Signal Processing and Control 1 (2006) 299–306 doi:10.1016/j.bspc.2006.12.001techniques for MRI brain images classification”, Digital Signal Processing 20 (2010) 433–441 doi:10.1016/j.dsp.2009.07.002
  5. Sadik Kara, Fatma Dirgenali, “A system to diagnose atherosclerosis via wavelet transforms”, principal component analysis and artificial neural networks Expert Systems with Applications 32 (2007) 632–640 doi:10.1016/j.eswa.2006.01.043
  6. Soo-Yeon Ji, Kevin Ward and Kayvan Najarian “Brain mapping and detection of functional patterns in fMRI using wavelet transform”; application in detection of dyslexia BMC Medical Informatics and Decision Making 2009, 9(Suppl 1):S6 doi:10.1186/1472-6947-9-S1-S6
  7. El-Sayed Ahmed, El-Dahshan,Tamer Hosny, Abdel-Badeeh M. Salem, “Hybrid intelligent techniques for MRI brain images classification”, Digital Signal Processing 20 (2010) 433–441 doi:10.1016/j.dsp.2009.07.002
  8. Ulacl Bagcl, Li Bai, “A COMPARISON OF DAUBECHIES AND GABOR WAVELETS FOR CLASSIFICATION OF MR IMAGES”, IEEE International Conference on Signal Processing and Communications (ICSPC 2007), 24-27 November 2007, Dubai, United Arab Emirates
  9. Torabi M., Moradzadeh H., Vaziri R., Razavian S., Ardekani R.D., Rahmandoust M., Taalimi A., Fatemizadeh E., Development of Alzheimer's Disease Recognition using Semiautomatic Analysis of Statistical Parameters based on Frequency Characteristics of Medical Images, IEEE International Conference on Signal Processing and Communications, 2007. ICSPC 2007. DOI: 10.1109/ICSPC.2007.4728457 Page(s): 868 - 871
  10. Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie and Athaur Rahman Najeeb,MRI Reconstruction Using Discrete Fourier Transform: A tutorial,World Academy of Science, Engineering and Technology 42 2008
  11. AmirEhsan Lashkari A Neural Network-Based Method for Brain Abnormality Detection in MR Images Using Zernike Moments and Geometric Moments International Journal of Computer Applications (0975 – 8887)Volume 4 – No.7, July 2010
  12. Wimo, B. Winblad, H. Aguero-Torres, E. von Strauss, The magnitude of dementia occurrence in the world, Alzheimer Disease & Associated Disorders 17 (2) (2003) 63–67.
  13. Leow, A. Klunder, C. Jack Jr., A. Toga, A. Dale, M. Bernstein, P. Britson, J. Gunter,Ward, J. Whitwell, B. Borowski, A. Fleisher, N. Fox, D. Harvey, J. Kornak, N. Schuff, C. Studholme, G. Alexander, M. Weiner, P. Thompson, “Longitudinal stability of MRI for mapping brain change using tensor based morphometry”, NeuroImage 31 (2006) 627–640.
  14. Y. Unal, H. E. Kocer, H.E. Akkurt, “Automatic Diagnosis of Intervertebral Degenerative Disk Disease Using Artificial Neural Network”, 6th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, Elazig, Turkey.
Index Terms

Computer Science
Information Sciences

Keywords

3D MRI ANN DWT Features SPM VBM