CFP last date
20 December 2024
Reseach Article

Application of Variation Iteration Method to Material Transport Problems in Finite Membranes

by K.Venugopal, L.Rajendran
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 29 - Number 9
Year of Publication: 2011
Authors: K.Venugopal, L.Rajendran
10.5120/3593-4985

K.Venugopal, L.Rajendran . Application of Variation Iteration Method to Material Transport Problems in Finite Membranes. International Journal of Computer Applications. 29, 9 ( September 2011), 12-14. DOI=10.5120/3593-4985

@article{ 10.5120/3593-4985,
author = { K.Venugopal, L.Rajendran },
title = { Application of Variation Iteration Method to Material Transport Problems in Finite Membranes },
journal = { International Journal of Computer Applications },
issue_date = { September 2011 },
volume = { 29 },
number = { 9 },
month = { September },
year = { 2011 },
issn = { 0975-8887 },
pages = { 12-14 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume29/number9/3593-4985/ },
doi = { 10.5120/3593-4985 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:15:20.260175+05:30
%A K.Venugopal
%A L.Rajendran
%T Application of Variation Iteration Method to Material Transport Problems in Finite Membranes
%J International Journal of Computer Applications
%@ 0975-8887
%V 29
%N 9
%P 12-14
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A mathematical model of the transport material through a membrane of finite thickness via the process of diffusion has been developed. We may consider a membrane in between a donor and a receptor compartment. the cause of an externally applied electric field and concurrent first-order chemical reaction of the diffusion species with sites in the membrane on the diffusion state is examined via the formulation of a time dependant differential equation and its subsequent solution by variational iteration method(VIM). A simple closed form of analytical expression for the concentration profile is derived and compared with the previous results and found to be in good agreement.

References
  1. Carslaw HS, Jaeger JC(1997) Conduction of heat in solids, 2nd edn, Clarendon Press, Oxford
  2. Crank J(1998) The mathematics of diffusion , 2nd edn, Clarendon Press, Oxford.
  3. Ludolph RA, Veith WR, Friseh HL(1979) J phys Chem 83:2793
  4. Leypoldt JK, Gough DA(1980) J phys Chem 84:1058
  5. Keister JC, Kasting GB(1986) J Membr Sei 29:155
  6. Chen JS, Rosenberger F(1991) J phys Chem 95:10164
  7. M.E.Lyans , Judith Murphy , Serge Rebouillat J Solid State ElectroChemistry 4(2000).
  8. Fakhari, A., Domairry, G.,Ebrahimpour: Approximate explicit solutions of nonlinear BBMB equations by Homotopy analysis Method and and comparison with exact solutions. Phys.Lett.A 368, 64-68(2007)
  9. Churchill RV(1972) Operational mathematics. 3rd edn. McGraw-Jill, New York.p 464
  10. Spanier J.Oldham KB(1987)An atlas of functions, Hemisphere ,New yoark. pp390-391.
  11. He J.H. J.Comput Appl.Math.207,3(2007) and reference therein.
  12. He. J.H., Abdou,Chaos Solutions Fracticals34(5),1430(2007)
  13. He.J.H. Int. J. Nonlinear Sci. Numer.Simulat.2(4),230(1997)
  14. He J.H. J.Comput.Appl.Math.207,I(2007)
  15. Hossein Jafari et.al Applied Mathe. Science 2(10),471-477(2008).
Index Terms

Computer Science
Information Sciences

Keywords

Diffusion membranes Diffusion équations Active diffusion Iontophoresis