We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Call for Paper
December Edition
IJCA solicits high quality original research papers for the upcoming December edition of the journal. The last date of research paper submission is 20 November 2024

Submit your paper
Know more
Reseach Article

A Simple Approach to Design Recursive Digital Differentiators and Integrators

by D. K. Upadhyay, R. K. Singh
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 29 - Number 9
Year of Publication: 2011
Authors: D. K. Upadhyay, R. K. Singh
10.5120/3591-4979

D. K. Upadhyay, R. K. Singh . A Simple Approach to Design Recursive Digital Differentiators and Integrators. International Journal of Computer Applications. 29, 9 ( September 2011), 23-27. DOI=10.5120/3591-4979

@article{ 10.5120/3591-4979,
author = { D. K. Upadhyay, R. K. Singh },
title = { A Simple Approach to Design Recursive Digital Differentiators and Integrators },
journal = { International Journal of Computer Applications },
issue_date = { September 2011 },
volume = { 29 },
number = { 9 },
month = { September },
year = { 2011 },
issn = { 0975-8887 },
pages = { 23-27 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume29/number9/3591-4979/ },
doi = { 10.5120/3591-4979 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:15:21.626786+05:30
%A D. K. Upadhyay
%A R. K. Singh
%T A Simple Approach to Design Recursive Digital Differentiators and Integrators
%J International Journal of Computer Applications
%@ 0975-8887
%V 29
%N 9
%P 23-27
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, a simple approach is proposed to design recursive digital differentiators and integrators by applying the concept of time-constant analysis. The time-constant combined with the magnitude response describes the system behavior of a digital differentiator and an integrator. Further, new recursive digital differentiator and integrator designs of first-order systems are also obtained for more accurate or comparable magnitude responses as compared to the existing designs of higher-order systems over wideband. These designs are more suitable for control systems and signal processing applications.

References
  1. Al-Alaoui, M. A. 1988. A stable differentiator with a controllable signal to Noise ratio. IEEE Trans. IM-37, pp. 383-388.
  2. Al-Alaoui, M. A. 1992. Novel approach to designing digital differentiators. Electron. Lett., vol. 28(15), pp. 1376–1378.
  3. Al-Alaoui, M. A. 1993. Novel digital integrator and differentiator. Electron. Lett., vol. 29(4), pp. 376–378.
  4. Bihan, J. L. 1993. Novel class of digital integrators and differentiators. Electron. Lett., vol. 29(11), pp. 971–973.
  5. Al-Alaoui, M. A. 1994. Novel IIR differentiator from the Simpson integration rule. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 41(2), pp. 186–187.
  6. Al-Alaoui, M. A. 1995. A class of second-order integrators and low-pass differentiators. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 42(4), pp. 220–223.
  7. Al-Alaoui, M. A. 1997. Filling the gap between the bilinear and the backward difference transforms: an interactive design approach. International Journal of Electrical Engineering, vol. 34(4), pp. 331-337.
  8. Al-Alaoui, M. A. 2001. Novel stable higher order s to z transforms,” IEEE Trans. Circuits Syst. I, Fundam. Theory and Appl., vol. 48(11), pp. 1326-1329.
  9. Al-Alaoui, M. A. 2007. Linear phase low pass IIR digital differentiators. IEEE Trans. Signal Processing, vol. 55(2), pp. 697-706, February.
  10. Al-Alaoui, M. A. 2008. Al-Aloui operator and the new transformation polynomials for discretization of analogue systems. Electrical Engineering, vol. 90(4), pp. 455-567.
  11. Papamarkos N. and Chamzas, C. 1996. A new approach for the design of digital integrators. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 43(9), pp. 785–791.
  12. Ngo, N. Q. 2006. A New Approach for the Design of Wideband Digital Integrator and Differentiator. IEEE Transactions on circuits and systems—II, vol. 53(9), pp. 936-940.
  13. Pei, S.C. and Hsu, H.J. 2008. Fractional bilinear transform for analog to digital conversion. IEEE Trans. Signal Processing, vol. 56(5), pp. 2122-2127.
  14. Gupta, M., Varshney, P., Viswewaran G.S. and Kumar, B. 2008. Novel digital differentiator and corresponding fractional order differentiator models. Sigmap, pp. 47-54.
  15. Gupta, M., Jain M. and Kumar, B. 2009. “Wideband digital integrator,” Proceedings of IEEE, IMPACT. pp. 106-108.
  16. Al-Alaoui, M. A. 2009. Novel class of digital integrators and differentiators. IEEE Trans. Signal Processing, DOI: 10.1109/TSP.2008.929668.
  17. Gupta, M., Jain, M. and Kumar, B. 2010. Recursive wideband digital integrator and differentiator. Wiley Int. J. Circ. Theor.Appl., DOI:10.1002/cta.658.
  18. Upadhyay, D. 2010. Recursive wideband digital differentiators. Electron. Lett., 46(25), pp. 1661-1662.
  19. Oppenheim, A. V., Schaffer, R. W. and Buck, J. R. 1999. Discrete time signal processing, PHI.
  20. Kumar, B. and Dutta Roy, S.C. 1988. Design of digital differentiators. Proceedings of IEEE, vol. 76(3), pp. 287-289.
  21. Kumar, B. and Dutta Roy, S.C. 1989. Maximally linear FIR digital differentiators for high frequencies. IEEE Trans. Circuits and Systems, vol. 36(4), pp. 890-893.
  22. Sunder, S. and Ramachandran, V.1994. Design of equripple non recursive digital differentiators and Hilbert transformers using a weighted least square technique. IEEE Trans. Signal Processing, vol. 42(9), pp. 2504-2509.
  23. Mollova, G. 1999. Compact formulas for least-squares design of digital differentiators. Electron. Lett., 35(20), pp. 1695-1697.
  24. Tsai, L.-C. and Wu, Y.-T. 2009. Time-Constant Control analysis of microwave differentiators. IET Microw. Antennas Propag., vol.3, pp.1044-1050.
Index Terms

Computer Science
Information Sciences

Keywords

Digital differentiator Digital integrator Percentage relative error Recursive Time-constant Wideband