CFP last date
20 December 2024
Reseach Article

Fault Diagnosis in Wireless Sensor Network using Timed Automata

by Santi Kumari Behera, Prabira Kumar Sethy, Dr. Pabitra Mohan Khilar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 29 - Number 7
Year of Publication: 2011
Authors: Santi Kumari Behera, Prabira Kumar Sethy, Dr. Pabitra Mohan Khilar
10.5120/3578-4948

Santi Kumari Behera, Prabira Kumar Sethy, Dr. Pabitra Mohan Khilar . Fault Diagnosis in Wireless Sensor Network using Timed Automata. International Journal of Computer Applications. 29, 7 ( September 2011), 15-20. DOI=10.5120/3578-4948

@article{ 10.5120/3578-4948,
author = { Santi Kumari Behera, Prabira Kumar Sethy, Dr. Pabitra Mohan Khilar },
title = { Fault Diagnosis in Wireless Sensor Network using Timed Automata },
journal = { International Journal of Computer Applications },
issue_date = { September 2011 },
volume = { 29 },
number = { 7 },
month = { September },
year = { 2011 },
issn = { 0975-8887 },
pages = { 15-20 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume29/number7/3578-4948/ },
doi = { 10.5120/3578-4948 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:15:09.308655+05:30
%A Santi Kumari Behera
%A Prabira Kumar Sethy
%A Dr. Pabitra Mohan Khilar
%T Fault Diagnosis in Wireless Sensor Network using Timed Automata
%J International Journal of Computer Applications
%@ 0975-8887
%V 29
%N 7
%P 15-20
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

An important problem in distributed systems that are subject to component failures is the distributed diagnosis problem. In distributed diagnosis, each working node must maintain correct information about the status (working or failed) of each component in the system. In this paper we consider the problem of identifying faulty (crashed) nodes in a wireless sensor network and used timed automata for representation. A fault diagnosis protocol specifically designed for wireless sensor networks is introduced and analyzed using finite automata theory. The protocol is proved to be optimal and energy efficient under certain assumptions. In this paper, we propose a diagnosis algorithm on the basis of diagnosability definitions and theoretical studies developed for timed and hybrid automata. The proposed algorithm has been simulated by using MATLAB and the diagnosis parameters such as diagnosis latency and message complexity.

References
  1. C. Townsend, S. Arms,- Wireless Sensor Networks, MicroStrain, Inc, Chapter 22.
  2. S. Rangarajan and T. Dahbura-A Distributed System-Level Diagnosis Algorithm for Arbitrary Network Topologies, IEEE Trans. Computer, Vol.44, No. 2, Feb. 1995.
  3. E. P. Duarte Jr. and T. Nanya, “A Hierarchical Adaptive Distributed System-Level Diagnosis Algorithm”, IEEE Trans. Computer., Vol.47, No. 1, Jan. 1998.
  4. A. Subbiah and D. M. Blough,” Distributed Diagnosis in Dynamic Fault Environments”, IEEE Trans. Computer, Vol.15, No. 5, May 2004.
  5. S. Bandypadhyay and E J Coyle,” An Energy Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks”, IEEE INFOCOM 2003, vol.3, pages 1713-1723.
  6. B. Das and Bharghayan, “Routing in Ad-Hoc Network Using Minimum Connected Dominating Sets”, in Proceeding of ICC, 1997.
  7. W. Heinzelman, A. Chandrakasan, and H. Balakrishnan-“Energy-Efficient Communication Protocols for Wireless Microsensor Network,” proc. Hawaiian Int’l Conf. on System Science Jan 2000.
  8. R. Krishnan and D. Starobinski, "Message-efficient self-organization of wireless sensor networks," in Proc. IEEE WCNC 2003, pp. 1603-1608.
  9. F. Kuhn, T. Moscibroda, R. Wattenhofer, "Fault-Tolerant Clustering in Ad Hoc and Sensor Networks," icdcs, pp.68, 26th IEEE International Conference on Distributed Computing Systems (ICDCS'06), 2006.
  10. D. Riordan and S. Sampalli, “Cluster-head Election using Fuzzy Logic for Wireless Sensor Networks”, ISBN: 0-7695-2333-1, page: 255-260, 2005.
  11. L.Qing, Q. Zhu, M. Wang- Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks, Computer Communication, pp-2230-2237, 2006.
  12. G. S. Tomar, S. Verma- Dynamic Multi-level Hierarchal Clustering Approach for Wireless Sensor Network, proceeding of the UKSim 2009: 11th International Conference on Computer Modeling and Simulation, pp-563-567, March 2009
  13. P. R. China, “A New Method for Node Fault Detection in Wireless Sensor Networks”, ISSN 1424-8220, page: 1282-1294, 2009.
  14. W. Qiu, E. Skafidas, P. Hao, Enhanced tree routing for wireless sensor networks, Ad Hoc Networks, Vol-7, no. 3, pp. 638-650, May 2009.
  15. A. Tiwari, P. Ballal and F. L. Lewis- Energy-Efficient wireless Sensor Network Design and Implementation for Condition-based Maintenance, ACM Transactions on Sensor Networks(TOSN), Vol-3, no. 1, PP-1-es, March 2007.
  16. Z. Xiaorong, S. Lianfing- Near Optimal Cluster-Head Selection for Wireless Sensor Networks, journal of Electronics, Vol-24, no.-6, November 2007.
  17. S. Fazackerley, A. Paeth, R. Lawrence- Cluster Head Selection using FR Signal Strength, in proceeding: CCECE’09 Candian Conference On Electrical and Computer Engineering, pp-334-338, 2009.
  18. H. Abusaimeh, S. H. Yang- Dynamic Cluster Head for Lifetime Efficient in WSN, in proceeding International Journal of Automation and Computing, pp-48-54, February 2009.
  19. H. Munaga, J. V. R. Murthy, N. B. Venkateswarlu- A Novel Trajectory Clustering Technique For Selecting Cluster Heads In Wireless Sensor Networks, in proceeding: International Journal Of Recent Trends In Engineering, Vol-1,no. 1, May 2009.
  20. X. Sheng, S. Papavassiliou, L. Zakrevski- Fault-Tolerant Cluster-Based Routing Approach In Wireless Mobile Ad Hoc Networks, in proceeding: 54th conference of IEEE VTS on Vehicular Technology, Vol-4, PP-2613-2617, 2001
  21. K. Romer, F. Mattern- The Design Space of Wireless Sensor Networks, IEEE Wireless Communications, Vol-6, PP-54-61, December 2004.
  22. F. Laroussinie, N. Markey, and P. Schnoebelen. “Efficient timed model checking for discrete-time systems”. Theoretical computer science, 353(1-3):249-271, march 2006.
  23. G. S. Tomar and S. Verma, “Dynamic Multi-level Hierarchal Clustering Approach for Wireless Sensor Networks”, IEEE 2009.
  24. R. Alur, D. L. Dill- A Theory of Timed Automata, In proceeding of the 17th international colloquium on Automata, Languages, and Programming(1990), and in the Proceeding of the REX workshop “Real-time: theory in practice(1991)”, vol-126, no.2, pp- 183-253, April 1994.
  25. R. Alur, C. Courcoubetis, T. A. Henzinger and Pei-Hsin Ho- Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems, INPROCEEDINGS:Alur92 hybrid automata, pages-209--229,Springer-Verlag,1992.
  26. S. Tripakis, Fault Diagnosis for Timed Automata, Springer Berlin/Heidelberg, vol- 2469, pp-205-221, Lecture Notes in Computer Science, January 2002.
  27. Di Benedetto, M. D., S. Di Gennaro and A. D'Innocenzo (2005). Error detection within a specific time horizon and application to air traffic management. In: Proceedings of the Joint 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC'05), Seville, Spain. pp. 7472-7477.
  28. A. D’Innocenzo, M. D. Di Benedetto, S. Di Gennaro, Obserable of Hybrid Automata abstraction, In J. Hespanha and A. Tiwari, editors, Hybrid System: Computation and Control, Vol-3927 of Lecture Notes in Computer Science, PP-169-183, Springer Verlag, 2006.
  29. F. Laroussinie, N. Markey, P. Schnoebelen- Efficient Timed Model checking for discrete-time systems, Theoretical Computer Science, Vol-353, pp-249-271, march 2006.
  30. Di Benedetto, M. D., S. Di Gennaro and A. D'Innocenzo (2006b). Critical states detection with bounded probability of false alarm and application to air traffic management. In: Proceedings of the 2nd IFAC Conference on Analysis and Design of Hybrid Systems (ADHS), Alghero, Sardinia, Italy.
  31. Di Benedetto, M.D., S. Di Gennaro and A. D'Innocenzo- Diagnosability verification for hybrid automata and durational graphs. In: Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, Louisiana, USA, December 2007.
  32. D'Innocenzo, A., M. D. Di Benedetto and S. Di Gennaro (2006). Observability of hybrid automata by abstraction. In: Hybrid Systems: Computation and Control (J. Hespanha and A. Tiwari, Eds.). Vol. 3927 of Lecture Notes in Computer Science. pp. 169-183. SpringerVerlag.
Index Terms

Computer Science
Information Sciences

Keywords

Distributed system wireless sensor network fault Timed automat Security Algorithms sensor automata process monitoring health monitoring dynamic diagnosis network model unicast multicast δ-diagnosabolity fault-dignosis timed automata