CFP last date
20 January 2025
Reseach Article

On a-continuous Intuitionistic Fuzzy Multifunctions

by S.S. Thakur, Kush Bohre, Shailendra Singh Thakur
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 29 - Number 3
Year of Publication: 2011
Authors: S.S. Thakur, Kush Bohre, Shailendra Singh Thakur
10.5120/3546-4862

S.S. Thakur, Kush Bohre, Shailendra Singh Thakur . On a-continuous Intuitionistic Fuzzy Multifunctions. International Journal of Computer Applications. 29, 3 ( September 2011), 20-23. DOI=10.5120/3546-4862

@article{ 10.5120/3546-4862,
author = { S.S. Thakur, Kush Bohre, Shailendra Singh Thakur },
title = { On a-continuous Intuitionistic Fuzzy Multifunctions },
journal = { International Journal of Computer Applications },
issue_date = { September 2011 },
volume = { 29 },
number = { 3 },
month = { September },
year = { 2011 },
issn = { 0975-8887 },
pages = { 20-23 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume29/number3/3546-4862/ },
doi = { 10.5120/3546-4862 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:14:48.618828+05:30
%A S.S. Thakur
%A Kush Bohre
%A Shailendra Singh Thakur
%T On a-continuous Intuitionistic Fuzzy Multifunctions
%J International Journal of Computer Applications
%@ 0975-8887
%V 29
%N 3
%P 20-23
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In 1999, Ozbakir and Coker [23] introduced the concept intuitionistic fuzzy multifunctions and studied their lower and upper intuitionistic fuzzy semi continuity from a topological space to an intuitionistic fuzzy topological space. The present paper introduces the concept of α-continuous intuitionistic fuzzy multifunctions. An Intuitionistic fuzzy multifunction F from a topological spaces (X,T) to an intuitionistic fuzzy toplogical spaces (Y,Γ) is said to be Intuitionistic fuzzy α-continuous at a point if for any G ̃_1,G ̃_2∈IFO(Y) such that F(x_0)⊂G ̃_1 and F(x_0)∩G ̃_2 there exists U∈αO(X) containing x_0 such that F(u)⊂G ̃_1 and F(u)∩G ̃_2,∀ u∈U. F is called Intuitionistic fuzzy α-continuous if it has this property at each point of X. Several properties and characterizations of Intuitionistic fuzzy α-continuous

References
  1. Andrijevic D. 1984, Some Propreties of the Topology of α-sets, Mat. Vesnik 36,1-10.
  2. Atanassov K. 1983, Intuitionistic Fuzzy Sets, In VII ITKR’s Session, (V. Sgurev, Ed.) Sofia, Bulgaria,
  3. Atanassov K. and Stoeva S. 1983, Intuitionistic Fuzzy Sets, In Polish Symposium on Interval and Fuzzy Mathematics , Poznan, 23-26
  4. K. Atanassov K. 1986, Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 20, 87-96.
  5. Berge C. 1959, Espaces topologiques. Fonctions multivoques, Dunod. Paris.
  6. Chang C. L. 1968, Fuzzy Topological Spaces, J. Math. Anal. Appl. 24, 182-190.
  7. Coker D. 1997, An Introduction to Intuitionistic Fuzzy Topological Spaces, Fuzzy Sets and Systems 88, 81-89.
  8. Coker D. and Demirci M. 1995, On Intuitionistic Fuzzy Points, Notes on Intuitionistic Fuzzy Sets 2(1), 78-83
  9. Evert J. 1988, Fuzzy Valued Maps. Math. Nachr. 137, 79-87.
  10. Gurcay H., D. Coker D. and Hayder A. Es. 1997, On Fuzzy Continuity in Intuitionistic Fuzzy Topological Spaces. The Journal of Fuzzy Mathematics 5(2),365-378.
  11. Levine N. 1963, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70, 36-41.
  12. Lupianez F. G. 2004, Separation axioms in intuitionistic fuzzy topological spaces, International Journal of Pure and Applied Mathematics 17(1)29-34.
  13. Maheshwari S. N., Thakur S. S. 1985, On α-Compact spaces, Bull. Int. Math. Acad. Sinica 13, 341-347.
  14. Maheshwari S. N., Thakur S. S. 1980, On α-irresolute mappings, Tamkang Jour. Math. 11(2)209-214.
  15. Maheshwari S. N., Thakur S. S. 1985, On α-Continuous Mappings, J. Indian. Acad. Math., 7(1), 46-50.
  16. Mashhour A. S., Hasanein I. A., El- Deeb S. N. 1983, α-Continuous and α-open Mapping, Acta Math. Hungar. 41, 213-218.
  17. Neubrunnov A. 1973, On certain generalizations of the notions of continuity. Mathematiki Casopis 23(4),374-80.
  18. Neubrunn T. 1988, Strongly quasi-continuous multivalued mapping. In General Topology and its Relations to Modern Analysis and Algebra VI(prague 1986), Heldermann, Berlin, (1988), pp. 351-359.
  19. Njastad O. 1965, On some classes of nearly open sets, Pecific J. Math. 15, 961-970.
  20. Noiri T. 1982, A function which preserves connected spaces, Casopis Pest. Math. 107 , 393-396.
  21. Noiri T.1984, On α-Continuous functions, Casopis Pest. Math. 109, 118-126.
  22. Noiri T., Di Maio G. 1988, Properties of α-compact Spaces. In: Third National conference on Topology (Trieste, 1986) (Italian), Rend. Circ. Mat. Palermo(2) Suppl. 18,359-369.
  23. Ozbakir O. and Coker D. 1999, Fuzzy Multifunction’s in Intuitionistic Fuzzy Topological Spaces, Notes on Intuitionistic Fuzzy Sets 5(3)1-5.
  24. Papageorgiou N. S. 1985, Fuzzy Topology and Fuzzy multifunctions. Jour. Math. Anal. Appl.,109(2),397-425.
  25. Popa V. and Noiri T. 1993, On Upper and Lower α-Continuous Multifunctions.Math.Slovaca,43,no.4,477-491.
  26. Saxena S. 2008, Extension of set valued mappings in fuzzy Topololgy. Ph.D. Dissertation , Rani Durgavati Vishwavidhyalaya Jabalpur (2008).
  27. Thakur S. S. and Bohre Kush 2011, On intuitionistic fuzzy multifunctions , International Journal of Fuzzy Systems and Rough Systems.4(1) (2011) (accepted).
  28. Thakur S. S. and Bohre Kush , On Upper and Lower α-Continuous intuitionistic fuzzy multifunctions (Submitted)
  29. Zadeh L. A. 1965, Fuzzy Sets, Information and Control, 18(1965),338-353.
Index Terms

Computer Science
Information Sciences

Keywords

Intuitionistic fuzzy sets Intuitionistic fuzzy topology Intuitionistic fuzzy multifunctions lower α-continuous and upper α-continuous Intuitionistic fuzzy multifunctions