CFP last date
20 February 2025
Reseach Article

Product Intuitionistic Fuzzy Graph

by N. Vinoth Kumar, G. Geetha Ramani
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 28 - Number 1
Year of Publication: 2011
Authors: N. Vinoth Kumar, G. Geetha Ramani
10.5120/3351-4620

N. Vinoth Kumar, G. Geetha Ramani . Product Intuitionistic Fuzzy Graph. International Journal of Computer Applications. 28, 1 ( August 2011), 31-33. DOI=10.5120/3351-4620

@article{ 10.5120/3351-4620,
author = { N. Vinoth Kumar, G. Geetha Ramani },
title = { Product Intuitionistic Fuzzy Graph },
journal = { International Journal of Computer Applications },
issue_date = { August 2011 },
volume = { 28 },
number = { 1 },
month = { August },
year = { 2011 },
issn = { 0975-8887 },
pages = { 31-33 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume28/number1/3351-4620/ },
doi = { 10.5120/3351-4620 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:13:38.812825+05:30
%A N. Vinoth Kumar
%A G. Geetha Ramani
%T Product Intuitionistic Fuzzy Graph
%J International Journal of Computer Applications
%@ 0975-8887
%V 28
%N 1
%P 31-33
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we introduce product intuitionistic fuzzy graphs and prove several results which are analogous to intuitionistic fuzzy graphs. We conclude by giving properties for a product partial intuitionistic fuzzy sub graph.

References
  1. A. Rosenfeld. Fuzzy graphs, in: L. A. Zadeh, K. S. Fu, K. Tanaka, M. Shimura (Eds.), Fuzzy Sets and Their Applications to Cognitive and Decision processes, Academic Press, New York, 1975, pp. 77 – 95.
  2. Atanassov KT. Intuitionistic fuzzy sets: theory and applications. Physica, New York,1999.
  3. Harary. F., Graph Theory, Addition Wesley, Third Printing, October 1972.
  4. J. N. Mordeson, P. S. Nair, Fuzzy Graphs and Fuzzy Hyper graphs, Physica – Verlag, Heidelberg, 2000.
  5. Parvathi. R and Karunambigai. M.G., Intuitionistic Fuzzy Graphs, Computational Intelligence, Theory and applications, International Conference in Germany, Sept 18, 20, 2006.
  6. Arumugam.S and Velammal.S, Edge Domination in Graphs, Taiwanese Journal Of Mathematics, Vol.2, No.2, pp.173-179, June 1998
  7. Ayyaswamy.S, and Natarajan.C, International Journal of Computational and Mathematical sciences, 2010.
  8. Nagoor Gani, A, and Basher Ahamed.M, Order and Size in Fuzzy Graphs, Bulletin of Pure and Applied Science, Vol 22E, 2003; p.145-148
  9. Nagoor Gani, A., and Vadivel.P, Relation between the Parameter of Independent Domination and Irredundance in Fuzzy Graph, International Journal of Algorithms, Computing and Mathematics, Vol 2,2009.
  10. Somasundaram,A.,Somasundaram,S.,1998, Domination in Fuzzy Graphs-I, Pattern Recognition Letters, 19, pp. 787–791.
  11. Somasundaram, A., 2004, Domination in Fuzzy Graph-II, Journal of Fuzzy Mathematics.
Index Terms

Computer Science
Information Sciences

Keywords

Intuitionistic Fuzzy Graphs Product Intuitionistic fuzzy graphs