CFP last date
20 January 2025
Call for Paper
February Edition
IJCA solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 20 January 2025

Submit your paper
Know more
Reseach Article

Content-Adaptive Refined Error Concealment Schemes for H.264/AVC Video Coding

by Santosh V. Chapaneri
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 27 - Number 7
Year of Publication: 2011
Authors: Santosh V. Chapaneri
10.5120/3309-4535

Santosh V. Chapaneri . Content-Adaptive Refined Error Concealment Schemes for H.264/AVC Video Coding. International Journal of Computer Applications. 27, 7 ( August 2011), 36-43. DOI=10.5120/3309-4535

@article{ 10.5120/3309-4535,
author = { Santosh V. Chapaneri },
title = { Content-Adaptive Refined Error Concealment Schemes for H.264/AVC Video Coding },
journal = { International Journal of Computer Applications },
issue_date = { August 2011 },
volume = { 27 },
number = { 7 },
month = { August },
year = { 2011 },
issn = { 0975-8887 },
pages = { 36-43 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume27/number7/3309-4535/ },
doi = { 10.5120/3309-4535 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:13:12.298299+05:30
%A Santosh V. Chapaneri
%T Content-Adaptive Refined Error Concealment Schemes for H.264/AVC Video Coding
%J International Journal of Computer Applications
%@ 0975-8887
%V 27
%N 7
%P 36-43
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we propose content-adaptive refined error concealment schemes for video transmission over packet lossy networks. The proposed spatial and temporal error concealment algorithms improve the reconstructed video quality at the common loss rates encountered on the networks. To reduce the computational complexity, the proposed schemes make use of the existing information of Intra prediction modes from the coded bit-stream for spatial error concealment. Neighboring macroblocks mode information is used to adapt the partition size of the lost macroblock to enhance the temporal error concealment performance. In addition, overlapped motion compensation is used to avoid the spatial discontinuities. A hybrid spatio-temporal concealment scheme is also proposed to use the appropriate algorithm for the lost macroblocks in the Inter frames. Experimental results demonstrate that the proposed schemes improve the concealment performance and reduce the structural degradations.

References
  1. T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luhtra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video Techn., vol. 13, no. 7, pp. 560-576, Jul. 2003.
  2. L. Superiori, O. Nemethova, W. Karner, and M. Rupp, “Cross-layer detection of visual impairments in H.264/AVC video sequences streamed over UMTS networks,” IEEE Intl. Workshop on Cross Layer Design, pp. 96-99, Sep. 2007.
  3. S. S. Hemami, and T. Meng, “Transform coded image reconstruction exploiting interblock correlation,” IEEE Trans. Image Process., vol. 4, no. 7, pp. 1023-1027, Jul. 1995.
  4. H.264/AVC Software Coordination, “Joint Model software,” Joint Video Team, ver. 18.0
  5. Online Available: http://iphome.hhi.de/suehring/tml/.
  6. J. W. Suh, and Y. S. Ho, “Error concealment based on directional interpolation,” IEEE Trans. Consum. Electron., vol. 43, no. 3, pp. 295-302, Aug. 1997.
  7. D. L. Robie, and R. M. Mersereau, “The use of Hough transforms in spatial error concealment,” IEEE Intl. Conf. Acoustics, Speech and Signal Process., vol. 4, pp. 2131-2134, Jun. 2000.
  8. Z. Alkachouh, and M. G. Bellanger, “Fast DCT-based spatial domain interpolation of blocks in images,” IEEE Trans. Image Process., vol. 9, no. 4, pp. 729-732, Apr. 2000.
  9. G. S. Yu, M. M. K. Liu, and M. W. Marcellin, “POCS-based error concealment for packet video using multiframe overlap information,” IEEE Trans. Circuits Syst. Video Tech., vol. 8, no. 4, pp. 422-434, Aug. 1998.
  10. P. Salama, N. Shroff, and E. J. Delp, “Error concealment in MPEG video streams over ATM networks,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 1129-1144, Jun. 2000.
  11. Y. Xu, and Y. Zhou, “H.264 video communication based refined error concealment schemes,” IEEE Trans. Consum. Electron., vol. 50, no. 4, pp. 1135-1141, Nov. 2004.
  12. Z. Wang, Y. Yu, and D. Zhang, “Best neighborhood matching: An information loss restoration technique for block-based image coding systems,” IEEE Trans. Image Process., vol. 7, no. 7, pp. 1056-1061, Jul. 1998.
  13. D. Agrafiotis, D. R. Bull, and C. N. Canagarajah, “Enhanced error concealment with mode selection,” IEEE Trans. Circuits Syst. Video Tech., vol. 16, no. 8, pp. 960-973, Aug. 2006.
  14. W. M. Lam, A. R. Reibman, and B. Liu, “Recovery of lost or erroneously received motion vectors,” IEEE Intl. Conf. Acoustics, Speech and Signal Process., vol. 5, pp. 417-420, Apr. 1993.
  15. J. Zheng, and L. P. Chau, “A temporal error concealment algorithm for H.264 using Lagrange interpolation,” Proc. IEEE Intl. Symp. Circuits and Systems, vol. 2, pp. 133-136, May 2004.
  16. J. Zhang, J. F. Arnold, and M. R. Frater, “A cell-loss concealment technique for MPEG-2 coded video,” IEEE Trans. Circuits Syst. Video Tech., vol. 10, no. 4, pp. 659-665, Jun. 2000.
  17. T. Thaipanich, P. H. Wu, and J. C. C. Kuo, “Video error concealment with outer and inner boundary matching algorithms,” Applications of Digital Image Processing XXX, Proceedings of the SPIE, vol. 6696, DOI: 10.1117/12.735998, Sep. 2007.
  18. M. J. Chen, L. G. Chen, and R. M. Weng, “Error concealment of loss motion vectors with overlapped motion compensation,” IEEE Trans. Circuits Syst. Video Tech., vol. 7, no. 3, pp. 560-563, Jun. 1997.
  19. M. Orchard, and G. J. Sullivan, “Overlapped block motion compensation: An estimation theoretic approach,” IEEE Trans. Image Process., vol. 3, no. 9, pp. 693-699, Sep. 1994.
  20. D. Kim, S. Yang, and J. Jeong, “A new temporal error concealment method for H.264 using adaptive block sizes,” IEEE Intl. Conf. Image Process., vol. 3, pp. 928-931, Sep. 2005.
  21. O. Nemethova, A. Al-Moghrabi, and M. Rupp, “Flexible error concealment for H.264 based on directional interpolation,” IEEE Intl. Conf. Wireless Networks, Communications and Mobile Computing, vol. 2, pp. 1255-1260, Jun. 2005.
  22. ITU-T Video Coding Experts Group, “Video coding for low bit rate communication,” ITU-T recommendation H.263, Jan. 2005.
  23. S. Wenger, “Common conditions for wire-line, low delay IP/UDP/RTP packet loss resilient testing,” ITU-T SG16 Doc. VCEG-N79r1, 2001.
  24. Z. Wang, L. Lu, and A. C. Bovik, “Video quality assessment based on structural distortion measurement,” Signal Processing: Image Communication, special issue on “Objective Video Quality Metrics”, vol. 19, no. 2, pp. 121-132, Feb. 2004.
  25. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error measurement to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 1, pp. 1-14, Jan. 2004.
Index Terms

Computer Science
Information Sciences

Keywords

Error concealment H.264/AVC Intra prediction OBMC SSIM Video quality index