We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Image Reconstruction using Fast Inverse Half tone and Huffman Coding Technique

by Dr. H.B. Kekre, Dr. Tanuja K. Sarode, Sanjay R. Sange, Ankit Lahoti, Gauri Sawant
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 27 - Number 6
Year of Publication: 2011
Authors: Dr. H.B. Kekre, Dr. Tanuja K. Sarode, Sanjay R. Sange, Ankit Lahoti, Gauri Sawant
10.5120/3303-4518

Dr. H.B. Kekre, Dr. Tanuja K. Sarode, Sanjay R. Sange, Ankit Lahoti, Gauri Sawant . Image Reconstruction using Fast Inverse Half tone and Huffman Coding Technique. International Journal of Computer Applications. 27, 6 ( August 2011), 34-40. DOI=10.5120/3303-4518

@article{ 10.5120/3303-4518,
author = { Dr. H.B. Kekre, Dr. Tanuja K. Sarode, Sanjay R. Sange, Ankit Lahoti, Gauri Sawant },
title = { Image Reconstruction using Fast Inverse Half tone and Huffman Coding Technique },
journal = { International Journal of Computer Applications },
issue_date = { August 2011 },
volume = { 27 },
number = { 6 },
month = { August },
year = { 2011 },
issn = { 0975-8887 },
pages = { 34-40 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume27/number6/3303-4518/ },
doi = { 10.5120/3303-4518 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:13:05.631462+05:30
%A Dr. H.B. Kekre
%A Dr. Tanuja K. Sarode
%A Sanjay R. Sange
%A Ankit Lahoti
%A Gauri Sawant
%T Image Reconstruction using Fast Inverse Half tone and Huffman Coding Technique
%J International Journal of Computer Applications
%@ 0975-8887
%V 27
%N 6
%P 34-40
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Transmission of audio-video data over internet applications like Multimedia is increasing with fast pace. Biometric, Content Based Image Retrieval (CBIR), CCTV footage applications require huge storage of images in database. For such applications this combination of half tone with Huffman coding is useful. Half toning is lossy technique used in printing industry where binary image is required. Objective of achieving higher Compression Ratio by combining lossy half tone and lossless Modified Huffman coding techniques is used. Apart from standard operator like Floyd-Steinberg and Jarvis operators, Small and South-East operator are used. Halftone and Huffman coding technique is implemented on 10 different color images of size 512x512. For measurement of image quality, Mean Square Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index (SSIM) are used. This hybrid technique can use for low bit rate video data transmission and mass image storage.

References
  1. Sanjay R. Sange, 2009 Restoration of Color Halftone image by using Fast Inverse Half toning Algorithm, in 2009 International Conference on Advances in Recent Technologies in Communication and Computing, 978-0-7695-3845-7/09 $25.00 © 2009 IEEE, DOI 10.1109/ARTCom.2009.36, pg .650—655,Oct.(2009)
  2. Hein, S., Zakhor, A, 1995Halftone to continuous–tone conversion of Error-diffusion coded images, IEEE Trans. Images Processing, vol.4, pp.208--216, Feb. (1995).
  3. Floyd, R. W., Steinberg, 1976, An adaptive algorithm for spatial grayscale, Proc. SID, vol. 17/2, pg. 75--77, (1976)
  4. Wong P., 1995 Inverse half toning and Kernel estimation for error diffusion, IEEE Trans. Image Processing, vol.4, pp.. 486--498, Apr (1995)
  5. Sange, S., 2009 A Survey on, Black and White and Color Half toning Techniques, SVKM’s NMIMS University, MPSTME, Journal of science, Engineering & Technology Management, ISSN: 0975-525X Techno-Path” Vol.1 No.2-May (2009), pg. no. 7--17
  6. Kite, T. D., Evans, B. L., Bovik, A. C., 2000 Modeling and Quality Assessment of Half toning by Error Diffusion, IEEE Transaction on Image Processing, vol.9.No.5, May (2000).
  7. Sange, S. R., 2010 Image data compression using new Halftoning operators and Run Length Encoding. In: 1st International Conference Thinkquest2010. Published in Springer Explorer and Springer CS Digital Library, pg-224—230, Feb (2010)
  8. H. B. Kekre, Sanjay R. Sange, Gauri S. Sawant, and Ankit A. Lahoty, 2011, Image Compression Using Half toning and Huffman Coding, ICTSM 2011, CCIS 145, pp.221–226, 2011. © Springer-Verlag Berlin Heidelberg 2011
  9. Pujar, J. H., Kadlaskar, L. M. 2005 – 2010, A New Lossless Method of Image Compression and Decompression using Huffman Coding Techniques, Journal of Theoretical and Applied Information Technology, (2005 – 2010) JATIT.
  10. Saravanan, C. Ponalagusamy, R. 2005 – 2010, Lossless Grey-scale Image Compression using Source Symbols Reduction and Huffman Coding, International Journal of Image Processing (IJIP), Volume (3): Issue (5), (2005 – 2010) JATIT.
  11. Aggarwal M. Narayan A. 2000, An Efficient Huffman Decoding”, in (2000) International Conference on Image Processing, IEEE Proceedings, pg.936—939 vol.1
  12. Tehranipour, M. H. Nourani, 2010, Mixed RL-Huffman encoding for power reduction and data compression in scan test, In: Intelligent Information Technology and Security Informatics (IITSI), 2010 Third International Symposium on 2-4 April (2010).
  13. Zhou Wang, Alan Conarad Bovik, Hamid Rahim Sheikh, 2004, Image Quality Assessment: From Error Visibility to Structural Similarity IEEE Transactions on Image Processing, Vol.13, No. 4, April 2004.
  14. Z. Wang, Dec. 2001, Rate scalable Foveated image and video communications, Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Texas at Austin, Austin, TX, Dec. 2001.
  15. Zhou Wang, A. C. Bovik,, Mar. 2002, A Universal image quality index, IEEE Signal Processing Letters, vol.9, pp. 81-84, Mar. 2002.
Index Terms

Computer Science
Information Sciences

Keywords

Halftone error diffusion gradient estimation concatenation Structure Similarity Index (SSIM) Huffman coding