CFP last date
20 December 2024
Reseach Article

Recognition of Facial Gestures using Gabor Filter

by Subhashini Ramalingam, Dr Ilango Paramasivam, Mangayarkarasi Ramiah
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 25 - Number 11
Year of Publication: 2011
Authors: Subhashini Ramalingam, Dr Ilango Paramasivam, Mangayarkarasi Ramiah
10.5120/3153-3990

Subhashini Ramalingam, Dr Ilango Paramasivam, Mangayarkarasi Ramiah . Recognition of Facial Gestures using Gabor Filter. International Journal of Computer Applications. 25, 11 ( July 2011), 48-53. DOI=10.5120/3153-3990

@article{ 10.5120/3153-3990,
author = { Subhashini Ramalingam, Dr Ilango Paramasivam, Mangayarkarasi Ramiah },
title = { Recognition of Facial Gestures using Gabor Filter },
journal = { International Journal of Computer Applications },
issue_date = { July 2011 },
volume = { 25 },
number = { 11 },
month = { July },
year = { 2011 },
issn = { 0975-8887 },
pages = { 48-53 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume25/number11/3153-3990/ },
doi = { 10.5120/3153-3990 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:11:34.916945+05:30
%A Subhashini Ramalingam
%A Dr Ilango Paramasivam
%A Mangayarkarasi Ramiah
%T Recognition of Facial Gestures using Gabor Filter
%J International Journal of Computer Applications
%@ 0975-8887
%V 25
%N 11
%P 48-53
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Vision is the task of “seeing”. When human see things, their eyes (sensing device) capture the image, then pass the information to brain (interpreting device). The brain interprets the image, gives us meanings of what human see [35]. Similarly, in computer vision, camera serves as sensing device, and computer acts as interpreting device to interpret the image what the camera captures. Gestures are expressive meaningful body motions i.e., physical movements of the hands, arms, fingers, head, face or other parts of the body with the intent to convey information or interact with the environment[12]. Gestures are used for everything from pointing at a person or an object to change the focus of attention, to conveying information. Gestures, which function independently of speech, are referred to as autonomous gestures Autonomous gesture can also represent motion commands to use in communication [15] and machine control. Gesture recognition is the process by which gestures made by the user are made known to the intelligence system. The core objective of the proposed work is to detect and recognize various facial gestures that are present in a given image using Gabor filter and use it for automation. The performance of the proposed method is evaluated using Gabor filtering and compared with the other methods namely wavelet and neural networks. Finally, it is concluded that the proposed method shows better performance over the other methods.

References
  1. Maria E. Jabot, Jeremy N. Balinese, Emmanuel Pontiacs, Leila Takayama, and Clifford Nass“Facial Expression Analysis for Predicting Unsafe Driving Behavior” IEEE Pervasive Computing 2010.
  2. Gwen L, Marian S B, Ian F, et al. "Dynamics of facial expression extracted automatically from video”, Image and Vision Computing, 2006 (24), pp. 615-625.
  3. L.Ma, K.Khorasani “Facial Expression Recognition Using Constructive feed forward Neural Networks” IEEE Transactions on Systems, Man and Cybernetics. 2004 pg-1588-1595
  4. B. V. Kumar, M. Savvies, K. Venkataramani and X. Xie”Spatial frequency domain image processing for biometric recognition", Proc. IEEE. Intl. Conf. Image Process., vol. 1, pp.53 -56 2002
  5. M. Savvies, B. Kumar and P. Kholo”CorefacesRobust shift invariant PCA based correlation filter for illumination tolerant face recognition", Proc. IEEE, Compute. Vis. Pattern Recognition., vol. 2, pp.834 -841 2004
  6. Qingshan Zhang, Zicheng Liu, Baining Guo,Demetri Terzopoulos, Heung-Yeung Shum”Geometry-Driven Photorealistic Facial Expression Synthesis” IEEE Transactions on visualization and computer graphics 2006 pg 48 – 60
  7. Douglas Fidaleo, Mohan Trivedi “Mainfold analysis of facial gestures for face recognition”, WBMA’03 ACM 2003 pg 65-69
  8. Chuang C F, Shih F Y. “Recognizing facial action units using independent component analysis and support vector machine”, Pattern Recognition, 2006 (39), pp.1795-1798 Viola, Jones “Robust real time object detection”, International journal of computer vision. 2001.
  9. P. J. Phillips , H. Moon , S. A. Rizvi and P. J. Rauss "The FERET evaluation methodology for face recognition algorithms", IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 10, pp.1090 -1104 2000 D. M. Blackburn , M. Bone and P. J. Phillips Facial recognition vendor test 2000 evaluation report,, 2000
  10. online Available:
  11. P. Phillips , P. Grother , R. Micheals , D. Blackburn , E. Tabassi and M. Bone Face recognition vendor test 2002: evaluation report,, 2003
  12. K. Messer , J. Kittler , M. Sadeghi , M. Hamouz and A. Kostin "Face authentication test on the BANCA database", Proc. Int. Conf. Pattern Recognit., vol. 4, pp.523 -532 2004 .
  13. P. J. Phillips , P. J. Flynn , T. Scruggs , K. Bowyer , J. Chang , K. Hoffman , J. Marques , J. Min and W. Worek "Overview of the face recognition grand challenge", Proc. IEEE. Comput. Vis. Pattern Recognit., vol. 1, pp.947 -954 2005
  14. P. N. Belhumeur and D. J. Kriegman "What is the set of images of an object under all possible lighting conditions?", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp.270 -277 1996
  15. R. Ramamoorthi and P. Hanrahan "On the relationship between radiance and irradiance: Determining the illumination from images of a convex Lambertian object", J. Opt. Soc. Amer., vol. 18, no. 10, pp.2448 -2459 2001
  16. A. Shashua and T. Riklin-Raviv "The quotient image: Class-based re-rendering and recognition with varying illuminations", IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 2, pp.129 -139 2001 .
  17. H. Wang , S. Li and Y. Wang "Generalized quotient image", Proc. IEEE. Comput. Vis. Pattern Recognit., vol. 2, pp.498 -505 2004 .
  18. Q. Li , W. Yin and Z. Deng "Image-based face illumination transferring using logarithmic total variation models", Int. J. Comput. Graph., vol. 26, no. 1, pp.41 -49 2009 .
  19. E. H. Land "The Retinex theory of color vision", Sci. Amer., vol. 237, no. 6, pp.108 -128 1977.
  20. D. J. Jobson , Z. Rahman and G. A. Woodell "Properties and performance of a center/surround Retinex", IEEE Trans. Image Process., vol. 6, no. 3, pp.451 -462 1997 .
  21. R. Gross and V. Brajovie "An image preprocessing algorithm for illumination invariant face recognition", Proc. 4th Int. Conf. Audio Video Based Biometric Person Authentication, vol. 2688/2003, pp.10-18,2003.
  22. J. Malik and P. Perona "Scale-space and edge detection using anisotropic diffusion", IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 7, pp.629 -639 1990 .
  23. M. A. Turk and A. P. Pentland "Eigenfaces for recognition", J. Cogn. Neurosci., vol. 3, no. 1, pp.71 -86 1991 .
  24. P. S. Penev and J. J. Atick "Local feature analysis: A general statistical theory for object representation", Network: Comput. Neural Syst., vol. 7, no. 3, pp.477 -500 1996 .
  25. M. Lades , J. C. Vorbruggen , J. Buhmann , J. Lange , C. von der Malsburg, R. P. Wurtz and W. Konen "Distortion invariant object recognition in the dynamic link architecture", IEEE Trans. Comput., vol. 42, no. 3, pp.300 -311 1993.
  26. L. Wiskott , J. M. Fellous , N. Kruger and C. von der Malsburg "Face recognition by elastic bunch graph matching", IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp.775 -779 1997
  27. J. Chang , M. Kirby , H. Kley , C. Peterson , B. Draper and R. Beveridge "Recognition of digital images of the human face at ultra low resolution via illumination spaces", Proc. Asian Conf. Comput. Vis., vol. 4844/2007, pp.733 -743 2007
  28. W. Hwang and S. Kee "International standardization on face recognition technology", Adv. Biomet. Person Authentic., vol. 3338/2005, pp.349 -357 2004
  29. J. Yang and C. Liu "Color image discriminate models and algorithms for face recognition", IEEE Trans. Neural Newt., vol. 19, no. 12, pp.2088 -2098 2008
  30. Z. Liu and C. Liu "Robust face recognition using color information", Adv. Biomet., vol. 5558/2009, pp.122 -131 2009
  31. X. Tan and B. Triggs "Fusing gabor and lbp feature set for kernel-based face recognition", Proc. IEEE Int. Workshop Anal. Model. Face Gestures, pp.235 -249 2007
  32. Y. Su , S. Shan , X. Chen and W. Gao "Hierarchical ensemble of global and local classifiers for face recognition", IEEE Trans. Image Process., vol. 18, no. 8, pp.1885 -1896 2009
  33. X. Wang and X. Tang "Random sampling LDA for face recognition", Proc. IEEE. Comput. Vis. Pattern Recognit., vol. 2, 2004
  34. B. Heisele , P. Ho , J. Wu and T. Poggio "Face recognition: Component-based versus global approaches", Comput. Vis. Image Understand., vol. 91, no. 1/2, pp.6 -21 2003
  35. T. Kim , H. Kim , W. Hwang and J. Kittler "Component-based LDA face description for image retrieval and MPEG-7 tandardisation", Image Vis. Comput., vol. 23, no. 7, pp.631 -642 2005
  36. P. Sinha , B. J. Balas , Y. Ostrovsky and R. Russell "Face recognition by humans: 19 results all computer vision researchers should know about", Proc. IEEE, vol. 94, no. 11, pp.1948 -1962
  37. A. Jain , K. Nandakumar and A. Ross "Score normalization in multimodal biometric systems", Pattern Recognit., vol. 38, no. 12, pp.2270 -2285 2005
  38. L. Wiskott , J. M. Fellous , N. Kruger and C. von der Malsburg "Face recognition and gender determination", Proc. Int. Workshop Face Gesture Recognit., pp.92 -97 1995
  39. M. Savvides , B. V. Kumar and P. Khosla pp.810 -813 2004 W. Hwang , G. Park , J. Lee and S. Kee "Multiple face model of hybrid fourier feature for large face image set", Proc. IEEE Comput. Vis. Pattern Recognit., vol. 2, pp.1574 -1581
  40. R. Chellappa , C. L. Wilson and S. Sirohey "Human and machine recognition of faces: A survey", Proc. IEEE, vol. 83, no. 5, pp.705 -741 1995.
Index Terms

Computer Science
Information Sciences

Keywords

Image processing Gabor filters computer vision