We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Intuitionistic Fuzzy Equipotent Sublattices of Lattice Ordered Groups with Respect to S-Norms

by Dr. M. Marudai, V. Rajendran
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 24 - Number 7
Year of Publication: 2011
Authors: Dr. M. Marudai, V. Rajendran
10.5120/2950-3963

Dr. M. Marudai, V. Rajendran . Intuitionistic Fuzzy Equipotent Sublattices of Lattice Ordered Groups with Respect to S-Norms. International Journal of Computer Applications. 24, 7 ( June 2011), 26-32. DOI=10.5120/2950-3963

@article{ 10.5120/2950-3963,
author = { Dr. M. Marudai, V. Rajendran },
title = { Intuitionistic Fuzzy Equipotent Sublattices of Lattice Ordered Groups with Respect to S-Norms },
journal = { International Journal of Computer Applications },
issue_date = { June 2011 },
volume = { 24 },
number = { 7 },
month = { June },
year = { 2011 },
issn = { 0975-8887 },
pages = { 26-32 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume24/number7/2950-3963/ },
doi = { 10.5120/2950-3963 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:10:23.051050+05:30
%A Dr. M. Marudai
%A V. Rajendran
%T Intuitionistic Fuzzy Equipotent Sublattices of Lattice Ordered Groups with Respect to S-Norms
%J International Journal of Computer Applications
%@ 0975-8887
%V 24
%N 7
%P 26-32
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we introduce the notion of intuitionistic fuzzy equipotent lattice in a fuzzy lattice and then some basic properties are investigated. Characterization of intuitionistic fuzzy equipotent lattices are given. Using a collection of lattices, an intuitionistic fuzzy equipotent lattice is established. The notion of fuzzy equipotent lattice relation on the family of all intuitionistic fuzzy sub lattices of L are discussed upper and lower level sets of fuzzy equipotent lattices are studied.

References
  1. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and systems, 20 (1986), pp. 87-96.
  2. N. Ajmal, the lattice of fuzzy normal sub groups is modular, Inform. Sci. 83 (1995), pp. 199-209.
  3. N. Ajmal and K.V. Thomas, The lattice of fuzzy sub-groups and fuzzy normal sub-groups, Inform. Sci., 76 (1994), pp. 1 – 11.
  4. N. Ajmal and K.V. Thomas, A complete study of the lattices of fuzzy congruence and fuzzy normal sub groups, Inform. Sci. 82 (1995), pp. 198-218.
  5. B. Banerjee and D.Kr. Basnet, Intuitionstic fuzzy sub rings and ideals, J. Fuzzy Math. 11 (1) (2003), pp. 139-155.
  6. R. Biswas, Insuitionstic fuzzy subrings, Mathematical Forum x(1989), pp. 37-46.
  7. H. Bustince and P. Butillo, Structures on intuitionistic fuzzy relations, Fuzzy sets and systems 78 (1996), pp. 293 – 303.
  8. D. Coker and A. Hayder Es, On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 3 (1995), 899 – 909.
  9. D. Coker. An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems 88 (1997), pp. 81 – 89.
  10. J.A. Goguen, L-fuzzy sets, J. Math Anal. Appl 18, pp. 145-174 (1967).
  11. H. Gurcay, D. Coker and A. Haydar Es, on fuzzy continuity in intuitionistic fuzzy topological spaces, J. fuzzy Maths. 5 (1997), pp. 365-378.
  12. K. Hur, S.Y. Jang and H.Kl. Kang, Intuitionistic fuzzy sub groupoids, International Journal of Fuzzy Logic and Intelligent systems 3 (1) (2003), 72-77.
  13. K. Hur, H.W. Kang and H.K. Song, Intuitionistic fuzzy sub groups and sub rings, Honam Math. J. 25 (1) (2003), pp. 19-41.
  14. K. Har, S.Y. Jang and H.W. Kang, Intuitionistic fuzzy sub groups and Cosets, Honam Math. J. 26 (1) (2004), pp. 17-41.
  15. K. Hur, Y.B. Jun and J.H. Ryou, Intuitionistic fuzzy topological groups, Honam Math. J. 26 (2) (2004), pp. 163-192.
  16. S.J. Lee and E.P. Lee, The categoris of Intuitionistic fuzzy topological spaces, Bull. Korean Math Soc. 37 (1) (2000), pp. 63-76.
  17. T.K. Mukharjee and M.K. Sen, on fuzzy ideals of a ring 1, Fuzzy sets and systems 21 (1987), pp. 98 – 104.
  18. M. Marudai and V. Rajendran, Characterization of fuzzy lattices on a group with respect to T-norms, International Journal of Computer Applications. (0975-8887) Volume 8 – No.8, October 2010. pp. 8 – 15.
  19. M. Marudai and V. Rajendran, Generalized product of fuzzy lattices and fuzzy ideals, Advances in Fuzzy Mathematics, (ISSN 0973-533x) Volume 6, Number 1 (2011), pp. 135 - 144.
  20. Nanda. S, Fuzzy Lattices, Bulletin of Calcutta Math. Soc. 18 (1989), pp.1 – 2.
  21. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), pp. 512 – 517.
  22. G.S.V. Satya Saibaba, Fuzzy lattice ordered groups, South East Asian Bulletin of Mathamatics 32, pp. 749 – 766 (2008).
  23. K.V. Thomas and Latha. S. Nair, Rough ideals in a lattice, International Journal fuzzy systems and rough systems. (To appear).
  24. K.V. Thomas and Latha. S. Nair, Rough intuitionistic fuzzy sets in a lattice, International Mathematical forum, Vol.6, 2011, No.27, pp. 1327 – 1335.
  25. Wang-Jin Liu, Fuzzy invariant sub groups and fuzzy ideals, Fuzzy sets and systems 8 (1982), pp. 133 – 139.
  26. Y.H. Yon and K.H. Kim, on intuitionistic fuzzy filters and ideals of lattices, Fat East J. Math, Sci 1(3), pp. 429 – 442.
  27. L.A. Zadeh, Fuzzy sets, Inform and control 8 (1965), pp. 338 – 353.
Index Terms

Computer Science
Information Sciences

Keywords

Fuzzy lattice Fuzzy equipotent Lattice level cut intuitionistic fuzzy equipotent sub lattice Homomorphism