CFP last date
20 December 2024
Reseach Article

Unsupervised Data Classification for Convex and Non Convex Classes

by Fairouz Lekhal, Mohamed El Hitmy, Ouafae El Melhaoui
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 24 - Number 1
Year of Publication: 2011
Authors: Fairouz Lekhal, Mohamed El Hitmy, Ouafae El Melhaoui
10.5120/2917-3843

Fairouz Lekhal, Mohamed El Hitmy, Ouafae El Melhaoui . Unsupervised Data Classification for Convex and Non Convex Classes. International Journal of Computer Applications. 24, 1 ( June 2011), 8-15. DOI=10.5120/2917-3843

@article{ 10.5120/2917-3843,
author = { Fairouz Lekhal, Mohamed El Hitmy, Ouafae El Melhaoui },
title = { Unsupervised Data Classification for Convex and Non Convex Classes },
journal = { International Journal of Computer Applications },
issue_date = { June 2011 },
volume = { 24 },
number = { 1 },
month = { June },
year = { 2011 },
issn = { 0975-8887 },
pages = { 8-15 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume24/number1/2917-3843/ },
doi = { 10.5120/2917-3843 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:09:49.889050+05:30
%A Fairouz Lekhal
%A Mohamed El Hitmy
%A Ouafae El Melhaoui
%T Unsupervised Data Classification for Convex and Non Convex Classes
%J International Journal of Computer Applications
%@ 0975-8887
%V 24
%N 1
%P 8-15
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

We present in this work, a new unsupervised data classification technique based on a three steps system: Split, Clean and Merge. In this system, the classes are represented by a set of subclasses that we call prototypes. The prototypes are created in an incremental way from the initial data set. No prior knowledge on the classes is required. The data are presented to the system one by one in an arbitrary way. The system built on a neural network strategy ends up by acquiring knowledge on the data and gathers the data into a set of real classes which may have a non convex structure. The method proposed is compared to the fuzzy C-means ‘FCM’ and fuzzy min max clustering ‘FMMC’ methods through a number of simulations. The results obtained by the proposed method are very good.

References
  1. P. Jiang, F. Ren and N. Zheng. 2009. A new approach to data clustering using a computational visual attention model. International Journal of Innovative Computing, Information and Control Volume 5, Number 12(A). (December 2009)
  2. P.K. Simpson. 1992. Fuzzy min-max neural networks. Part 1: classification. IEEE Transactions on Neural Networks, vol. 3, pp: 776-786.
  3. P.K. Simpson. 1993. Fuzzy min-max neural networks. Part 2: clustering. IEEE Transactions on Fuzzy Systems, vol. 1(1), pp: 32-45.
  4. M. Boubou. 2007. Contribution aux méthodes de classification non supervisée via des approches prétopologiques et d’agrégation d’opinions. Thése de Doctorat, Université Claude Bernard – Lyon I.
  5. H. Ouariachi. 2001. Classification non supervisée de données par réseaux de neurones et une approche évolutionniste: application à la classification d’images. Thèse de doctorat, Université Mohamed 1, Maroc
  6. M. Nasri, M. El Hitmy, H. Ouariachi and M. Barboucha. 2003. Optimization of a fuzzy classification by evolutionary strategies’’. In proceedings of SPIE Conf., 6th international Conference on Quality Control by Artificial Vision, Vol. 5132, pp. 220-230, USA, 2003. Repulished as an SME Technical paper by the Society of manufacturing engineers (SME), Paper number MV03-233, ID TP03PUB135, Dearborn, Michigan, USA, pp. 1-11, (24 June 2003).
  7. L. Khodja. 1998. Contribution à la classification floue non supervisée. Thése de doctorat, université de savoie.
  8. K. R. Zalik and B. Zalik. 2010. Validity index for clusters of different sizes and densities. Pattern Recognition Letters, 221-234, (18 September 2010).
  9. C. Duo, L. Xue and C. Du-Wu. 2007. An Adaptive Cluster Validity Index For The Fuzzy C-means. IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, ( February 2007).
  10. M. Nasri. 2004. Contribution à la classification des données par approches evolutionnistes : simulation et application aux images de textures. Thèse de Doctorat, Université Mohammed premier, Faculté des sciences Oujda, Maroc.
  11. M. S. Bouguelid. 2007. Contribution à l'application de la reconnaissance des formes et la théorie des possibilités au diagnostic adaptatif et prédictif des systèmes dynamiques. Thése de doctorat, Université de Reins Champagne- Ardenne.
  12. H. A. Boubacar. 2006. Classification dynamique de données non-stationnaires apprentissage et suivi de classes evolutives. Thése de doctorat, université des sciences et technologies de lille.
  13. O. Aya, M. Saued-Mouchaweh et P. Billaudel. 2010. Sélection dynamique des classifieurs pour l’amélioration du taux de classification dans les zones d’ambiguïtés ’’. 6éme conférences internationale Francophone d'Automatique (CIFA 2010).
Index Terms

Computer Science
Information Sciences

Keywords

Unsupervised classification split clean merge convex and non convex classes fuzzy min max clustering fuzzy C-means