CFP last date
20 January 2025
Reseach Article

Article:Common Fixed Point Theorems for OWC Maps in Symmetric Fuzzy Metric Spaces

by R. K. Vats, V. Sihag
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 23 - Number 5
Year of Publication: 2011
Authors: R. K. Vats, V. Sihag
10.5120/2881-3751

R. K. Vats, V. Sihag . Article:Common Fixed Point Theorems for OWC Maps in Symmetric Fuzzy Metric Spaces. International Journal of Computer Applications. 23, 5 ( June 2011), 31-37. DOI=10.5120/2881-3751

@article{ 10.5120/2881-3751,
author = { R. K. Vats, V. Sihag },
title = { Article:Common Fixed Point Theorems for OWC Maps in Symmetric Fuzzy Metric Spaces },
journal = { International Journal of Computer Applications },
issue_date = { June 2011 },
volume = { 23 },
number = { 5 },
month = { June },
year = { 2011 },
issn = { 0975-8887 },
pages = { 31-37 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume23/number5/2881-3751/ },
doi = { 10.5120/2881-3751 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:09:23.948864+05:30
%A R. K. Vats
%A V. Sihag
%T Article:Common Fixed Point Theorems for OWC Maps in Symmetric Fuzzy Metric Spaces
%J International Journal of Computer Applications
%@ 0975-8887
%V 23
%N 5
%P 31-37
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The purpose of this paper is to study the existence and uniqueness of common fixed point theorems for owc mappings satisfying a generalized mixed contractive condition of integral type in symmetric GV-fuzzy metric spaces. The perceptions of implicit relation function and control function has been utilized to establish the results. The efforts of this work unify, extend and complement many results existing in recent references and contain every theorem of multivalued self mappings of fuzzy metric space.

References
  1. Zadeh, L. A. 1965. Fuzzy Sets. Inf. and Cont.18 (1965), 338-353.
  2. Kaleva, O. and Seikkala, S. On fuzzy metric spaces. Fuzzy Sets Syst. 12 (1984), 215-229.
  3. Kramosil, I. and Michalek, J. 1975. Fuzzy metrics and statistical metric spaces, Kybernetika, 15 (1975) 326-334.
  4. George. A. and Veeramani, P. 1994. On some results on fuzzy metric spaces. Fuzzy Sets Syst. 64 (1994), 395-399.
  5. Schweizer, B. and Sklar, A. 1983. Probabilistic Metric Spaces. North Holland, New York, 1983.
  6. Grabiec, M. 1988. Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27 (1988), 385-389.
  7. Subrahmanyam, P. V. 1995. Common fixed point theorem in fuzzy metric spaces. Inf. Sci. 83(4) (1995), 109-112.
  8. Menger, K. 1942, Statistical metric, Proc. Nat. Acad. Sci. 28 (1942), 535-537.
  9. Gregori, V., Morillas, A. and Sapena, A. 2010. Examples of fuzzy metrics and application. Fuzzy Sets Syst. (2010).
  10. Gregory, V. and Romaguera, S. 2004. Characterizing completable fuzzy metric spaces. Fuzzy Sets Syst. 144 (2004), 411-420.
  11. Deng, Z. 1982. Fuzzy pseudo-metric space. J. Math. Anal. Appl. 86 (1982), 74-95.
  12. Erceg, M. A. 1979. Metric space in fuzzy set theory. J. Math. Anal. Appl. 69 (1979), 205-230.
  13. Mishra, S. N., Sharma, N. and Singh, S. L. 1994. Common fixed points of maps on fuzzy metric space. Int. J. Math. Math. Sci. 17(1994), 253-258.
  14. Jungck, G. and Rhoades, B. E. 2006. Fixed point theorems for occasionally weakly compatible Mappings. Fixed Point Theory. 7 (2006), 287–296.
  15. Dibari, C. and Vetro, C. 2003. Fixed point theorem for a family of mapping for fuzzy metric space. Rendi. Cir. Math. Di Palermo. 2 (2003), 315-321.
  16. Rana, R., Dimari, R. C. and Tomar, A. 2010. Fixed point theorem in fuzzy metric space using implicit relation. Int. J. of Comp. Appl. 8(2010), 8887-8875.
  17. Rao, K. P. R., Ravi Babu, G. and Fisher, B. 2008. Common fixed point theorem in fuzzy metric space under implicit relations. Hacet. J. of Math. and Sta. 37 (2008), 97-106.
  18. Singh, B. and Chauhan, M. S. 2000. Common fixed point of compatible maps in fuzzy metric spaces. Fuzzy Sets and Syst. 115 (2000) 47- 475.
  19. Altun, I. and Turkoglu, D. 2008. Some fixed point theorem in fuzzy metric space with implicit relation, Commun. Korean. Math. Soc., Comp. Appl. 23(2008), 111-124.
  20. Branciary, A. 2002. A fixed point theorem for mapping satisfying a general contractive condition of integral type. Int. J. M. and M. Sci. 29 (2002), 531- 536.
Index Terms

Computer Science
Information Sciences

Keywords

Common fixed points weakly occasionally weakly compatible mappings (owc) symmetric fuzzy metric spaces