CFP last date
20 January 2025
Reseach Article

Takagi-Sugeno Fuzzy Observer Design for Induction Motors with Immeasurable Decision Variables: State Estimation and Sensor Fault Detection

by M. Allouche, M. Souissi, M. Chaabane, D. Mehdi, F. Tadeo
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 23 - Number 4
Year of Publication: 2011
Authors: M. Allouche, M. Souissi, M. Chaabane, D. Mehdi, F. Tadeo
10.5120/2983-3737

M. Allouche, M. Souissi, M. Chaabane, D. Mehdi, F. Tadeo . Takagi-Sugeno Fuzzy Observer Design for Induction Motors with Immeasurable Decision Variables: State Estimation and Sensor Fault Detection. International Journal of Computer Applications. 23, 4 ( June 2011), 44-51. DOI=10.5120/2983-3737

@article{ 10.5120/2983-3737,
author = { M. Allouche, M. Souissi, M. Chaabane, D. Mehdi, F. Tadeo },
title = { Takagi-Sugeno Fuzzy Observer Design for Induction Motors with Immeasurable Decision Variables: State Estimation and Sensor Fault Detection },
journal = { International Journal of Computer Applications },
issue_date = { June 2011 },
volume = { 23 },
number = { 4 },
month = { June },
year = { 2011 },
issn = { 0975-8887 },
pages = { 44-51 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume23/number4/2983-3737/ },
doi = { 10.5120/2983-3737 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:09:21.344476+05:30
%A M. Allouche
%A M. Souissi
%A M. Chaabane
%A D. Mehdi
%A F. Tadeo
%T Takagi-Sugeno Fuzzy Observer Design for Induction Motors with Immeasurable Decision Variables: State Estimation and Sensor Fault Detection
%J International Journal of Computer Applications
%@ 0975-8887
%V 23
%N 4
%P 44-51
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper deals with the problem of sensor fault detection of induction motors described by some linear models blended together through non linear membership functions that involve unmeasurable decision variables. The intermittent disconnections of the sensors produce severe transient errors in the estimator used in the control loop, worsening the performance of the induction motor. Then, a Takagi-Sugeno (TS) observer is proposed, in descriptor form, to simultaneously estimate the states and achieve the detection and isolation of incipient sensors faults. For this, a TS model is first derived to represent precisely the induction motor in the fixed stator d-q reference frame. Secondly, a descriptor TS observer is synthesized, in which the sensor faults are considered as an auxiliary variable state. Some simulation results illustrate the effectiveness of the proposed approach

References
  1. J. Zarei, J. Poshtan, "Bearing fault detection using wavelet packet transform of induction motor stator current". Tribology International 40 pp. 763-769, 2007
  2. M.E.H. Benbouzid, "A review of induction motors signature analysis as a medium fault detection" IEEE Trans. Ind. Electr. 47(5), pp. 984–93. 2000.
  3. M. Trabelsi, M .Boussak, M. Gossa, "Detection of short-circuit’s defect in the stator windings of the asynchronous mot ors by using the Park’s vectors approach". 10th International conference on Sciences and Techniques of Automatic control & computer engineering, December pp. 20-22, Hammamet, Tunisia. 2009.
  4. J. Faiz, B.M. Ebrahimi, H.A. Toliyat, B. Akin, Diagnosis of a mixed eccentricity fault in a squirrel-cage three-phase induction motor using time stepping finite element technique, in: Proc. IEEE IEMDC Conf., vol. 2, 2007, pp. 1446–1450.
  5. S. Bachir, S. Tnani, C.C. Trigeassou, G. Champenois, "Diagnosis by parameter estimation of stator and rotor occurring in induction machines", IEEE Trans. Ind. Electr. 53 (3) (2006) 963–973.
  6. S.M. Bennett R.J. Patton, S. Daley, “Sensor fault-tolerant of a rail traction drive”, Control Engineering Practice, 1999, vol. 7, pp. 217–225.
  7. CJL. Toribio, R.J. Patton, S. Daley, "Takagi–Sugeno Fuzzy Fault-Tolerant Control of an Induction Motor". Neural Computing & Applications, Vol. 9, pp. 19–28, 2000.
  8. V.T. Tran, B.S. Yang, M.S. Oh, A.C.C. Tan, "Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference". Expert Systems with Applications 36, 2009 pp. 1840–1849
  9. P.V.J Rodrıguez, A.Arkkio, "Detection of stator winding fault in induction motor using fuzzy logic". Applied Soft Computing Vol. 8, pp. 1112–1120, 2008.
  10. G.I.S. Palmero, J.J. Santamaria, E.J. M. Torre, J.R.P. Gonzalez, "Fault detection and fuzzy rule extraction in AC motors by a neuro-fuzzy ART-based system". Engineering Applications of Artificial Intelligence Vol. 18, pp. 867–874, 2005.
  11. T. Czeslaw, K. Teresa, O. Kowalska, “Neural networks application for induction motor faults diagnosis”. Mathematics and computers in simulation, 2003, 63, pp. 435–448.
  12. D. Pomorski, P.B. Perche, “Inductive learning of decision trees: application to fault isolation of an induction motor”, Engineering Applications of Artificial Intelligence 14, 2001, pp. 155–166.
  13. T. Takagi, M. Sugeno, “Fuzzy identification of systems and its application to modeling and control“, IEEE Transactions on Systems, Man and Cybernetics, 15(1):116-132, 1985.
  14. Y. Morère, “Mise en oeuvre de lois de commandes pour les modèles flous de type Takagi-Sugeno“. PhD thesis from Université de Valenciennes et du Haut Cambrésis, Lille, France, January 4, 2001.
  15. D. Maquin, “State estimation and fault detection for systems described by Takagi-Sugeno nonlinear models”, 10th International conference on Sciences and Techniques of Automatic control & computer engineering, December 20-22, 2009, Hammamet, Tunisia.
  16. M. Bouattour, M. Chadli, A. El Hajjaji, M.Chaabane, “Sensor faults estimation for TS Models using descriptor techniques: Application to fault diagnostic”, 7th IFAC Symposium SAFEPROCESS’09. 30 June-03 July 2009.
  17. R. Marino, S. Peresada, P. Valigi,line "Adaptive input-output" linearizing control of inductions motors“, IEEE R.Marino, Transactions on automatic control, Vol 38, No.2, pp. 206-219, 1993.
  18. P. Tomei, C.M. Verrelli. A global tracking control for speed-sensorless inductions motors. Automatica, Vol 40, pp. 1071-1077, 2004.
  19. D. Ichalal, B. Marx, J. Ragot, D. Maquin, State estimation of Takagi–Sugeno systems with unmeasurable premise variables, IET Control Theory Appl., 2010, Vol. 4, Iss. 5,pp.897–908
  20. M. Nachidi, F. Rodríguez, F. Tadeo, J.L. Guzmán, Takagi-Sugeno Control Of Nocturnal Temperature In Greenhouses Using Air Heating, ISA Transactions, 50 (2011), pp. 315-320.
  21. K. Tanaka, H.O. Wang. Fuzzy control systems design and analysis: a linear matrix inequality approach. John Wiley & Sons;2001.
  22. M. Allouche, M. Chaabane, M. Soussi, D. Mehdi and A. Hajjaji, Takagi-Sugeno Fuzzy Sensor Faults Estimation of an induction motor, MED’10 Conference, Marrakech Morocco, June 2010.
Index Terms

Computer Science
Information Sciences

Keywords

Induction motor sensor faults Takagi-Sugeno models fuzzy descriptor observer Linear Matrix Inequalities (LMIs)