CFP last date
20 January 2025
Reseach Article

Schema Evolution for Data Warehouse: A Survey

by Meenakshi Arora, Anjana Gosain
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 22 - Number 6
Year of Publication: 2011
Authors: Meenakshi Arora, Anjana Gosain
10.5120/2590-3588

Meenakshi Arora, Anjana Gosain . Schema Evolution for Data Warehouse: A Survey. International Journal of Computer Applications. 22, 6 ( May 2011), 6-14. DOI=10.5120/2590-3588

@article{ 10.5120/2590-3588,
author = { Meenakshi Arora, Anjana Gosain },
title = { Schema Evolution for Data Warehouse: A Survey },
journal = { International Journal of Computer Applications },
issue_date = { May 2011 },
volume = { 22 },
number = { 6 },
month = { May },
year = { 2011 },
issn = { 0975-8887 },
pages = { 6-14 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume22/number6/2590-3588/ },
doi = { 10.5120/2590-3588 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:08:40.124963+05:30
%A Meenakshi Arora
%A Anjana Gosain
%T Schema Evolution for Data Warehouse: A Survey
%J International Journal of Computer Applications
%@ 0975-8887
%V 22
%N 6
%P 6-14
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Data warehouse is considered as the core component of the modern decision support systems. Due to the major support of data warehouse in the daily transaction of an enterprise, the requirements for the design and the implementation of DW are dynamic and subjective. This dynamic nature of the data warehouse may reflect the evolution in the data warehouse. Data warehouse evolution may be focused on three approaches namely schema evolution, schema versioning and view maintenance. Evolution of the data warehouse may often change their data and structure (schema changes). These schema changes may be consider according to the change in structure, software and users’ requirement. Schema evolution in data warehouse consists of various level namely structural level, conceptual level and behavioural level. This paper mainly focuses on schema evolution and proposes the operators to handle the creation and evolution of aggregated fact table. Our work is to do comparative study for various approaches of schema evolution.

References
  1. C.A. Hurtado, A.O. Mendelzon, A.A. Vaisman: Maintaining Data Cubes under Dimension Updates. Proceedings of the 15th International Conference on Data Engineering (ICDE), Sydney, Australia, March 1999.
  2. C.A. Hurtado, A.O. Mendelzon, A.A. Vaisman: Updating OLAP Dimensions. Proceedings of the 2nd International Workshop on Data Warehousing and OLAP, Kansas City, Missouri, USA, November 1999.
  3. M Blaschka, C Sapia, and G Hofling. On Schema Evolution in Multi-dimensional Databases. In 1st International Conference on Data Ware- housing and Knowledge discovery ( DaWak 99), Florence, Italy, Volume1676 of LNCS, pages153-164, Springer, 1999.
  4. C. Quix. Repository Support for Data Warehouse Evolution. In Proc. of the Intl workshop DMDW, Heidelberg, Germany 1999.
  5. Bouzeghoub, M., and Z. Kedad, “A Logical Model for Data Warehouse Design and Evolution,” Proceedings of the 2nd International Conference on Data Warehousing and Knowledge Discovery (DaWaK), London, UK, September 4-6, 2000, pp. 178-188.
  6. Chen, J., Chen, S., Rundensteiner, E.: A transactional model for data warehouse maintenance. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 247–262. Springer, Heidelberg (2002)
  7. Vaisman A.A., Mendelzon A.O., Ruaro W., Cymerman S.G.: Supporting Dimension Updates in an OLAP Server. Proc. of the CAISE02 Conference,Canada, 2002
  8. E. Benitez- Guerrero, C.Collet, M. Adiba. THE WHES APPROACH TO DATA WAREHOUSE EVOLUTION. E-Gn osis[ online], vol.2Art.2004
  9. Kaas C.E., Pedersen T.B., Rasmussen B.D.: Schema Evolution for Stars and Snowflakes. Proc. of the Intern. Conf. on Enterprise Information Systems(ICEIS 2004), Portugal, 2004
  10. Tadeusz Morzy, Robert Wrembel. On Querying Versions of Multiversion Data Warehouse. In Proc. Int. Workshop on Data Warehousing and OLAP, DOLAP’04, Washington (USA), 2004.
  11. Golfarelli, M., Lechtenbörger, J., Rizzi, S., Vossen, G.: Schema Versioning in Data Warehouses. In: Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang, D.Grandi, F., Mangina, E.E., Song, I.-Y., Mayr, H.C. (eds.) ER Workshops 2004. LNCS, vol. 3289, pp. 415–428. Springer, Heidelberg (2004)
  12. Jarernsri L.Mitrpanont, S.Fugkeaw. Direct Access Versioning for Multidimensional Database Schema Creation. Proceedings of the sixth IEEE International Conference on Computer and Information Technology (CIT’06), IEEE, 2006
  13. B.Bebel, Z.Krolinkowski, R.Wrembel. Formal approach to modeling a multiversion data warehouse. Bulletin of the Polish academy of sciences, Technical Sciences, Vol 54, No 1, 2006.
  14. G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou: What-if Analysis for Data Warehouse Evolution. April 2007. URL: www.dbnet.ece.ntua.gr/~gpapas/Publications/ DataWarehouseEvolution-Extended.pdf.
  15. S.Banerjee, K.C.Davis, Modeling Data Warehouse Schema Evolution over Extended Hierarchy Semantics, S.Spaccapietra et.al (EDs): Journal on Data Semantics XIII, LNCS 5530, pp.72-96,2009.@Springer- Verlag Berlin Heidelberg 2009.
  16. W.Oueslati, J. Akaichi. A survey on Data warehouse evolution. International Journal of Database Management Systems (IJDMS), Vol.2, No.4, November 2010.
  17. Adriana Marotta. Data Warehouse Design and Maintenance through Schema Transformations. Master thesis, October 2000.
  18. Paulraj Ponniah. Data Warehousing Fundamental Guide. Published by John Wiley and Sons, 2001
  19. J. Han, Y. Fu, W. Wang, J. Chiang, W. Gong, K. Koperski, D. Li, Y. Lu, A. Rajan, N. Stefanovic, B. Xia, and O. R. Zane. DBMiner: A system for mining knowledge in large relational databases. In Proc. 1996 Int. Conf. Data Mining and Knowledge Discovery (KDD'96), pages 250{255, Portland, Oregon, August 1996.
  20. M. Blaschka, FIESTA: A Framework for Schema Evolution in Multidimensional Information Systems, Proc.6th CASE Doctoral Consortium, Heidelberg, Germany, 1999.
Index Terms

Computer Science
Information Sciences

Keywords

Data Warehouse Evolution Schema Evolution Schema Operators Aggregate operator