CFP last date
20 January 2025
Reseach Article

Multi-Objective Optimization to Workflow Grid Scheduling using Reference Point based Evolutionary Algorithm

by Ritu Garg, Awadhesh Kumar Singh
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 22 - Number 6
Year of Publication: 2011
Authors: Ritu Garg, Awadhesh Kumar Singh
10.5120/2584-3570

Ritu Garg, Awadhesh Kumar Singh . Multi-Objective Optimization to Workflow Grid Scheduling using Reference Point based Evolutionary Algorithm. International Journal of Computer Applications. 22, 6 ( May 2011), 44-49. DOI=10.5120/2584-3570

@article{ 10.5120/2584-3570,
author = { Ritu Garg, Awadhesh Kumar Singh },
title = { Multi-Objective Optimization to Workflow Grid Scheduling using Reference Point based Evolutionary Algorithm },
journal = { International Journal of Computer Applications },
issue_date = { May 2011 },
volume = { 22 },
number = { 6 },
month = { May },
year = { 2011 },
issn = { 0975-8887 },
pages = { 44-49 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume22/number6/2584-3570/ },
doi = { 10.5120/2584-3570 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:08:44.202419+05:30
%A Ritu Garg
%A Awadhesh Kumar Singh
%T Multi-Objective Optimization to Workflow Grid Scheduling using Reference Point based Evolutionary Algorithm
%J International Journal of Computer Applications
%@ 0975-8887
%V 22
%N 6
%P 44-49
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Grid facilitates global computing infrastructure for user to consume the services over the network. To optimize the workflow grid execution, a robust multi-objective scheduling algorithm is needed. In this paper, we considered three conflicting objectives like execution time (makespan), total cost and reliability. We propose a multi-objective scheduling algorithm, using R-NSGA-II approach based on evolutionary computing paradigm. Simulation results shows that the proposed algorithm generates multiple scheduling solutions near the Pareto optimal front with small computation overhead.

References
  1. Foster, I., Kesselman, C. 1999. The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, ISBN 1-55860-475-8, San Francisco.
  2. Braun, T., Siegal, H., Beck, N. 2001. A comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems. In: Journal of Parallel and Distributed Computing, vol. 61, 810-837.
  3. X, He., XH, Sun., GV, Laszewski. 2003. QoS Guided min–min Heuristic for Grid Task Scheduling. In: Journal of Computer Science and Technology, vol. 18(4), 442-451.
  4. Wang, L., Siegel, H., Roychowdhury, V., Maciejewski, A. 1997. Task Matching and Scheduling in Heterogeneous Computing Environments using a Genetic-Algorithm-Based Approach. In: Journal of Parallel Distributed Computing, vol. 47, 9–22.
  5. Wieczorek, M., Prodan, R., Fahringer, T. 2005. Scheduling of Scientific Workflows in the ASKALON Grid Environment. SIGMOD Rec., vol. 34, 56-62, ACM
  6. Wieczorek, M., Podlipning, S., Prodan, R., Fahringer, T. 2008. Bi-criteria Scheduling of Scientific Workflows for the Grid. 978-0-7675-3156-4/08, IEEE.
  7. Yu, J., Buyya, R. 2006. Scheduling Scientific Workflow Applications with Deadline and Budget Constraints using Genetic Algorithms. Scientific Programming, vol. 14, 217-230.
  8. Tsiakkouri, E., Sakellariou, R., Zhao, H., Dikaiakos, M. 2005. Scheduling Workflows with Budget Constraints. In: CoreGRID Integration Workshop, 347-357.
  9. Haluk, T., Hariri, S., Wu, M. 2002. Performance-Effective and Low-Complexity Task Scheduling for Heterogeneous Computing. In: IEEE Transactions on Parallel and Distributed Systems, vol. 13, 260-274.
  10. Prodan, R., Fahringer, T. 2005. Dynamic scheduling of Scientific Workflow Applications on the Grid: A case study. In: SAC 05: Proceedings of the 2005 ACM Symposium on Applied Computing, 687–694.
  11. Yu, J., Kirley, M., Buyya, R. 2007. Multi-objective Planning for Workflow Execution on Grids. In: Proceedings of the 8th IEEE/ACM International conference on Grid Computing, ISBN:978-1-4244-1559-5, doi.10.1109/GRID.2007. 4354110.
  12. Talukder, A., Kirley, M., Buyya, R. 2009. Multiobjective Differential Evolution for Scheduling Workflow Applications on Global Grids. doi: 10.1002/cpe.1417, John Wiley & Sons, Ltd.
  13. Deb, K. 2001 Multi-Objective Optimization using Evolutionary Algorithms. Wiley and Sons, England.
  14. Deb, K., Pratap, A., Aggarwal, S., Meyarivan, T. 2000. A Fast Elitist Multi-Objective Genetic Algorithm: NSGA-II. In: Parallel Problems Solving from Nature VI, 849-858.
  15. Zitzler, E., Laumanns, M., Thiele, L. 2001. SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: K.C. Giannakoglou, D.T. Tshalis, J. Periaux, K. D. Papailion, T. Fogarty (eds), Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, 95-100, Athens, Greece.
  16. Knowles, J., Corne, D. 1999. The Pareto Archive Evolution Strategy: A New Baseline Algorithm for Multi-Objective Optimization, In: The congress on Evolutionary Computation, pp. 98-105.
  17. K. Deb, J. Sundar, U. R. Rao, S. Choudhuri. 2006. “Reference Point Based Multi-Objective Optimization Using Evolutionary algorithms”, International Journal of Computational Intelligence Research, ISSN 0973-1873 vol.2, No.3, 273–286.
  18. Camelo, M., Donoso, Y., Castro, H. 2010. A Multi-Objective Performance Evaluation in Grid Task Scheduling using Evolutionary Algorithms. In: Applied Mathematics and Informatics, ISBN: 978-960-474-260-8.
  19. Navimipour, N., Es-hagi, S. LGR. 2009. The New Genetic Based Scheduler for Grid Computing Systems. In: International Journal of Computer and Electrical Engineering, Vol. 1, No. 5, 610-614.
  20. Grosan, C., Abraham, A., Helvik, B. 2007. Multiobjective Evolutionary Algorithms for Scheduling Jobs on Computational Grids. In: International Conference on Applied Computing, Spain. ISBN 978-972-8924-30-0, 459-463.
  21. Dogan, A., Ozguner, F. 2005. Biobjective Scheduling Algorithms for Execution Time-Reliability trade-off in Heterogeneous Computing Systems. Comput. J., vol. 48, no. 3, 300-314.
  22. Buyya, R. GridSim: A Toolkit for Modeling and Simulation of Grid Resource Management and Scheduling, http://www.buyya.com/gridsim.
  23. Deb, K., Jain, S. 2002. Running Performance Metrics for Evolutionary Multi-objective Optimization. In: Simulated Evolution and Learning (SEAL-02), 13-20
  24. Do, T., Nguyen, T., Nguyen, D., Nguyen H., Le, T. Failure-aware Scheduling in Grid Computing Environments.
  25. Chitra, P., Revathi, S., Venkatesh, P., Rajaram, R. 2010. Evolutionary Algorithmic Approaches for Solving Three Objective Task Scheduling Problem on Heterogeneous Systems. In: 2nd International IEEE Conference on Advance Computing, ISBN 978-1-4244-4791-6/10, IEEE.
Index Terms

Computer Science
Information Sciences

Keywords

Workflow Grid Scheduling Multi-objective Optimization MOEA Pareto dominance