CFP last date
20 February 2025
Reseach Article

Pri-Tri: An Innovative Algorithm for Clustering Categorical Data in Data Warehouse

by S.Hari Ganesh, C.Chandrasekar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 20 - Number 7
Year of Publication: 2011
Authors: S.Hari Ganesh, C.Chandrasekar
10.5120/2448-3307

S.Hari Ganesh, C.Chandrasekar . Pri-Tri: An Innovative Algorithm for Clustering Categorical Data in Data Warehouse. International Journal of Computer Applications. 20, 7 ( April 2011), 6-11. DOI=10.5120/2448-3307

@article{ 10.5120/2448-3307,
author = { S.Hari Ganesh, C.Chandrasekar },
title = { Pri-Tri: An Innovative Algorithm for Clustering Categorical Data in Data Warehouse },
journal = { International Journal of Computer Applications },
issue_date = { April 2011 },
volume = { 20 },
number = { 7 },
month = { April },
year = { 2011 },
issn = { 0975-8887 },
pages = { 6-11 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume20/number7/2448-3307/ },
doi = { 10.5120/2448-3307 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:07:07.865988+05:30
%A S.Hari Ganesh
%A C.Chandrasekar
%T Pri-Tri: An Innovative Algorithm for Clustering Categorical Data in Data Warehouse
%J International Journal of Computer Applications
%@ 0975-8887
%V 20
%N 7
%P 6-11
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In the process of data mining to extract knowledge from large data set needs great potential to extract the hidden nuggets. To cluster the numerical data there are enormous clustering technique. Data mining for categorical data(qualitative and quantitative) the most frequently used algorithms are k-means, k-mediods and fuzzy rule all these methods needs a threshold value to overcome this problem. This paper propose an algorithm to optimize the number of clusters and it also uses novel way to construct the data mart using the concept of multiprocessing Pri-tri algorithm.

References
  1. Bambang Parmanto ,Mathew Scotch and Valerie Monaco, Usability Evaluation of the Spatial OLAP Visualization and Technique for Datasets using Analysis Tool (SOVAT), 2007, pp. 76- 95
  2. Bhaskar Sharma, Barkha Ratta, Gaurava Rai, Mayank Pokhariyal ,Meeta Saxena, K.P.Mishra ,Journal of Proteomics & Bioinformatics Predicting Secondary Structure of Oxidoreductase Protein Family Using Bayesian Regularization Feed-forward Backpropagation ANN Technique, 2010,pp179-182
  3. Dr.C.ChandraSekar,Hari Ganesh , A Parallel Computing Data Mining and Enhanced K-means Algorithm for Detecting Protein Sequence International Journal of Computing Technology and Information Security, 2011, Vol.1,No.1,pp.56-61.
  4. Edmonton, Alta., Canad, Popescu, C.A.; Wong, Y.S.; Grant MacEwan Coll., Knowledge and Data Engineering, IEEE Transactions , 2005, Volume: 17 Issue:12 , pp 1653 – 1663
  5. Feyyad, U.M.; Microsoft Res., Redmond, WA 2002 Data mining and knowledge discovery: making sense out of data ,IEEE XploreVolume: 11 Issue:5,pp 20 - 25 Guha, S.; Rastogi, R.; Shim, K.; Stanford Univ., CA , ROCK: A RObust clustering algorithm for Categorical Attributes, 2002 pp512 – 521.
  6. Hua Yan, Lei Zhang and Yi Zhang, Clustering Categorical Data Using Coverage Density, Springer,2005,pp 10-15
  7. K.Rajendra Prasad et. al.A Survey On Clustering Efficient Graph Structures, Vol. 2 (7), 2010, pp2707-2714
  8. Margaret H.Dunham,Data Mining Introductory and advanced topics,Pearson education,2010, pp 50-52
  9. Popescu, C.A.; Wong, Y.S.;Grant MacEwan Coll., Edmonton, Alta., Canada ,Nested Monte Carlo EM algorithm for switching state-space models, IEEE Xplore,2005,pp 1653 - 1663
  10. Sushmita mitra,Tinku Acharya Data Mining, Multimedia ,Soft computing and Bio informatics 2011,pp 39-40
  11. Yue Zhao; Yan-heng Liu; Xue-gang Yu; Hai-Yan Hu; FangMei; Coll. of Comput. Sci. & Technol., Jilin Univ., Changchun , A Method for Mobile Path Prediction Based on Data Mining,IEEE Xplore, 2007,Issue: 21-22,pp 691 – 695
  12. ZhexueHuang; Ng,M.K.; Manage. Inf. Principles Ltd., Melbourne, Vic ,2002 , A fuzzy k-modes algorithm for clustering categorical data, IEEE Xplore Volume: 7 Issue:4 ,pp446 - 452
Index Terms

Computer Science
Information Sciences

Keywords

Data mining clustering k-means Multiprocessing