CFP last date
20 February 2025
Reseach Article

Ventricular Arrhythmias Detection using Wavelet Decomposition

by V.Ilankumaran, S.ThamaraiSelvi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 20 - Number 1
Year of Publication: 2011
Authors: V.Ilankumaran, S.ThamaraiSelvi
10.5120/2399-3192

V.Ilankumaran, S.ThamaraiSelvi . Ventricular Arrhythmias Detection using Wavelet Decomposition. International Journal of Computer Applications. 20, 1 ( April 2011), 11-18. DOI=10.5120/2399-3192

@article{ 10.5120/2399-3192,
author = { V.Ilankumaran, S.ThamaraiSelvi },
title = { Ventricular Arrhythmias Detection using Wavelet Decomposition },
journal = { International Journal of Computer Applications },
issue_date = { April 2011 },
volume = { 20 },
number = { 1 },
month = { April },
year = { 2011 },
issn = { 0975-8887 },
pages = { 11-18 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume20/number1/2399-3192/ },
doi = { 10.5120/2399-3192 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:06:38.899016+05:30
%A V.Ilankumaran
%A S.ThamaraiSelvi
%T Ventricular Arrhythmias Detection using Wavelet Decomposition
%J International Journal of Computer Applications
%@ 0975-8887
%V 20
%N 1
%P 11-18
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper an algorithm has been proposed to detect and classify the cardiac arrhythmia from a normal Electro Cardio Graphic (ECG) signal based on wavelet decomposition with adaptive threshold. The MIT – BIH arrhythmia and malignant ventricular arrhythmia database has been utilized for evaluating the algorithm. The performance of the algorithm is compared with some existing algorithms in terms of signal duration time (episode length), sensitivity, specificity and positive selectivity. The analysis shows that the proposed algorithm gives satisfactory results.

References
  1. H. Traberg, “Marriott’s Practical Electrocardiography,”N Engl J Med, vol. 332, no. 10, pp. 690–, 1995.
  2. M. Malik and A. J. Camm, “Heart Rate Variability ,” Futura, Armonk, New York, 1995.
  3. Li. C, L., Z. Chongxun, and T. Changfeng, Detection of ECG characteristic points using wavelet transforms.Biomedical Engineering,IEEE Transactions on, 1995. 42(1): p. 21-28.
  4. Senhadji L, Carrault G., Bellanger J.J. and Passariello G., ‘Comparing wavelet transforms for recognizing cardiac patterns’, IEEE Transactions in Medicine and Biology, 1995, Vol.13(2), 167-173.
  5. Sahambi J S, Tandon S M & Bhatt R K P, ‘Quantitative analysis of errors due to power-line interference and base-line drift in detection of onsets and offsets in ECG using wavelets’, Medical and Biological Engineering and Computing, 1997(b), Vol.35, 747-751.
  6. Sivannarayana N. and Reddy D.C., ‘Biorthogonal wavelet transforms for ECG parameters estimation’, Medical Engineering and Physics, 1999, Vol.21, 167-174.
  7. Kadambe S., Murray R. and Boudreaux-Bartels G.F., ‘Wavelet transform-based QRS complex detector’, IEEE Transactions on Biomedical Engineering, 1999, Vol.46(7), 838-848
  8. Martinez, J.P., et al., A wavelet-based ECG delineator: evaluation on standard databases.Biomedical Engineering, IEEE Transactions on, 2004. 51(4): p. 570-581.
  9. C. Saritha, V. Sukanya, and Y. Narasimha Murthy, “ECG Signal Analysis Using Wavelet Transforms,” Bulgarian Journal of Physics, vol. 35, pp. 68-77, 2008.
  10. V. S. Chouhan, and S. S. Mehta, “Detection of QRS Complexes in 12- lead ECG using Adaptive Quantized Threshold,” IJCSNS International Journal of Computer Science and Network Security, vol. 8, no. 1, 2008.
  11. Awadhesh Pachauri, and Manabendra Bhuyan , “Robust Detection of R-Wave Using Wavelet Technique”, World Academy of Sci.,Eng. and Tech. 56 2009
  12. Ruchita gautam, anil kumar Sharma, “ Detection of QRS complexes of ECG recording based on wavelet transform using matlab” International Journal of Engineering Science and technology Vol. 2(7), 2010, 3038-3044
  13. Langer A, Heilman MS, Mower MM: Considerations in the devel¬opment of the automatic implantable defibrillator. Medical Instrumentation 1976, 10(3):163-167.
  14. Thakor NV, Natarajan A, Tomselli G: Multiway sequential hypothesis testing for tachyarrhythmia discrimination. IEEE Transactions on Biomedical Engineering 1994, 41(5):480-487.
  15. Chen SW, Clarkson PW, Fan Q: A robust detection algorithm for cardiac arrhythmia classification. IEEE Transactions on Bio-medical Engineering 1996, 43:1120-1125.
  16. Chen S, Thakor NV, Mover MM: Ventricular fibrillation detec¬tion by a regression test on the autocorrelation function. Med Biol Eng Comput 1987, 25(3):241-249.
  17. Ripley KL, Bump TE, Arzbaecher RC: Evaluation of techniques for recognition of ventricular arrhythmias by implanted devices. IEEE Transactions on Biomedical Engineering 1989, 36(6):618-624.
  18. Lin D, Jenkins JM, DiCarlo LA, MacDonald RS: Arrhythmia diagno¬sis using morphology and timing from atrial and ventricular leads. Computers in Cardiology 1988:159-162. (September)
  19. Throne RD, Jenkins JM, DiCarlo LA: A comparison of four new time-domain techniques for discriminating monomorphic ventricular tachycardia from sinus rhythm using ventricular waveform morphology. IEEE Transactions on Biomedical Engineering 1991, 38(5):561-570.
  20. Clayton RH, Murray A, Campbell RW: Comparison of four tech¬niques for recognition of ventricular fibrillation from the sur¬face ECG. Med Biol Eng Comput 1993, 31:111-117.
  21. Kuo S, Dillman R: Computer detection of ventricular fibrillation. Comput Cardiol 1978:347-349.
  22. V. X. Afonso, W. J. Tompkins, “Detecting ventricular fibrillation,” IEEE Eng. Med. Biol., pp. 152-159, MarcWApril 1995.
  23. Yan Sun, Kap Luk Chan , SM Krishnan , “ Life- threatening ventricular arrhythmia recognition by nonlinear descriptor,” Biomedical Engineering Online dol:10.1186/1475-925X-4-6, 2005
  24. Zheng XS, Zhu Ys , Thakor NV , Wang Zz , “ Detecting Ventricular Tachycardia and Fibrillation by complexity measure,” IEEE Transcation on biomedical engineering 1999, 46(5):548-555
  25. Youngkyoo, W.J.Tompkins, “Detecting and Classifying Life – threatening ECG Ventricular Arrhythmias using Wavelet Decomposition,” Proceeding of the 25th Annual Conference of the IEEE EMBS,2003
  26. Minami, K., H. Nakajima, and T. Toyoshima, Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network. Biomedical Engineering, IEEE Transactions on, 1999. 46(2): p. 179-185.
  27. Addison, P.S., et al., A Novel wavelet based analysis reveals hidden structure in ventricular fibrillation. IEEE Engineering in Medicine and Biology, 2000. 19(4): p. 383-392.
  28. Prasad, G.K., Sahambi, J.S. Classification of ECG arrhythmias using multiresolution analysis and Neural Networks. in Conference on Convergent Technologies. 2003. Bangalore, India.
  29. Inan, O.T., L. Giovangrandi, and G.T.A. Kovacs, Robust Neural-Network-Based Classification of Premature Ventricular Contractions Using Wavelet Transform and Timing Interval Features. Biomedical Engineering, IEEE Transactions on, 2006. 53(12): p. 2507-2515.
  30. Yu, S.-N. and Y.-H. Chen, Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network. Pattern Recogn. Lett., 2007. 28(10): p. 1142- 1150.
  31. Güler, İ. and E.D. Übeylı, ECG Beat Classifier designed by Combined Neural Network Model.Pattern recognit., 2005. 38: p. 199-208.
  32. Issac Niwas, S., R. Shantha Selva Kumari, and V. Sadasivam, Artificial neural network based automatic cardiac abnormalities classification, in Computational Intelligence and Multimedia Applications, 2005. Sixth International Conference on. 2005.
  33. E.S.Jayachandran Paul Joseph K, R Acharya U “ Analysis of Myocaridal Infarction using Discrete Wavelet Transform” J Med System ,2009, Online dol : 10.1007/s10916-009 – 9314 -5.
  34. Fayyaz A Afsar , M Arif “ Robust Electro cardiogram Beat Classification using Discrete Wavelet Transform” Physiol. Meas. 29, 555- 570,2008
  35. Sankarasubramaniam A, Gurusamy G, Selvakumar G “Wavelet based detection of ventricular arrhythmias with neural network classifier”J,Biomedical Science and Engineering 2 (2009) 439-444.
  36. S.Karpagachelvi, Dr.M.Arthanari, M.Sivakumar, “ECG Feature Extraction Techniques - A Survey” International Journal of Computer Science and Information Security, Vol. 8, No. 1, April 2010
  37. Mallat, S., “A Wavelet Tour of Signal Processing. London: Academic Press”, 1999
  38. A. Cohen and J. Kova،cevic´, “Wavelets: The mathematical background,” Proc. IEEE, vol. 84, pp. 514–522, Apr. 1996.
  39. C. Li, C. Zheng, and C. Tai, “Detection of ECG characteristic points using wavelet transforms,” IEEE Trans. Biomed. Eng., vol. 42, pp. 21–28, Jan. 1995.
  40. Massachusetts Institute of Technology, MIT-BIH arrhythmia databasehttp://www.physionet.org/physiobank/ database/mitdb
  41. AAMI, Association for the advancement of medical instrumentation, “Recommended practice for testing reporting performance results of ventricular arrhythmia detection algorithms,” 1986.
  42. L. Khadra, A. S. AI-Fahoum, H. AI-Nashash, “Detection of life threatening cardiac arrhythmia using the wavelet transformation,” Med Biol. Eng. Compul., vol. 35, pp. 626-632, 1997.
  43. V.Ilankumaran , S.ThamariSelvi , “QRS detection using Wavelet Transform by Adaptive Threshold Techniques,” International Conference on BioMedical Engineeing ICBME Dec , 2005
  44. V.Ilankumaran , S.ThamariSelvi , “Detection and Classification of Ventricular Arrhythmias using Wavelet Transform,” International journal on – in the journal of CIIT international journal of CiiT International Journal of Artificial Intelligent Systems and Machine Learning DoI: AIML092009001 Print: ISSN 0974 – 9667 & Online: ISSN 0974 – 9543, Sep 2009.
Index Terms

Computer Science
Information Sciences

Keywords

Arrhythmia Electro Cardio Graph (ECG) Fibrillation Ventricular Tachycardia (VT) Supra Ventricular Tachycardia (SVT) Ventricular Flutter ( VF)