CFP last date
20 January 2025
Reseach Article

Fixed Point Theorems for Occasionally Weakly Compatible Maps in Fuzzy Metric Spaces

by Manish Jain, Sanjay Kumar, Satish Kumar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 19 - Number 9
Year of Publication: 2011
Authors: Manish Jain, Sanjay Kumar, Satish Kumar
10.5120/2393-3179

Manish Jain, Sanjay Kumar, Satish Kumar . Fixed Point Theorems for Occasionally Weakly Compatible Maps in Fuzzy Metric Spaces. International Journal of Computer Applications. 19, 9 ( April 2011), 1-5. DOI=10.5120/2393-3179

@article{ 10.5120/2393-3179,
author = { Manish Jain, Sanjay Kumar, Satish Kumar },
title = { Fixed Point Theorems for Occasionally Weakly Compatible Maps in Fuzzy Metric Spaces },
journal = { International Journal of Computer Applications },
issue_date = { April 2011 },
volume = { 19 },
number = { 9 },
month = { April },
year = { 2011 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume19/number9/2393-3179/ },
doi = { 10.5120/2393-3179 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:06:29.605298+05:30
%A Manish Jain
%A Sanjay Kumar
%A Satish Kumar
%T Fixed Point Theorems for Occasionally Weakly Compatible Maps in Fuzzy Metric Spaces
%J International Journal of Computer Applications
%@ 0975-8887
%V 19
%N 9
%P 1-5
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The aim of this paper is to establish some common fixed point theorems under occasionally weakly compatible maps using implicit functions.

References
  1. C.T.Aage and J.N.Salunke; On fixed point theorems in fuzzy metric spaces; Int. J. Open Problems Compt. Math., 3(2), (2010), 123-131.
  2. R.Chugh, S.Rathi and S.kumar; Common fixed point theorem for compatible mappings of type(P) in fuzzy metric spaces, Studii Si Cercetari Stintifce, Seria Mathematica, 12(2002), 75-84.
  3. Y.J.Cho; Fixed points in fuzzy metric space; J.Fuzzy Math.,5(4),(1997),949-962.
  4. Y.J.Cho, B.K.Sharma and R.D.Sahu; Semi compatibility and fixed points; Math. Japonica, 42(1), (1995), 91.
  5. Z.K.Deng; Fuzzy pseudo-metric space; J. Math. Anal. Appl., 86(1982),74-95.
  6. M.A.Erceg; Metric space in fuzzy set theory; J. Math. Anal. Appl., 69(1979), 205-230.
  7. M. Fre ́chet; Sur quelques points du calcul fonctionnel; Rendiconti de Circolo Matematico di Palermo, 22(1906), 1-74.
  8. M.Grabiec; Fixed points in fuzzy metric spaces; Fuzzy Sets and Systems; 27(1983),385-389.
  9. A.George and P.Veeramani; On some results in fuzzy metric spaces; Fuzzy Sets and Systems;64(1994), 395-399.
  10. G.Jungck and B.E.Rhoades; Fixed point theorems for set valued functions without continuity; Indian J. Pure and Applied Math., 29(1998), 227-238.
  11. G.Jungck and B.E.Rhoades; Fixed point theorems for occasionally weakly compatible mappings; Fixed Point Theory, 7(2), (2006), 287-296. * Permanent Address: DESM ,NCERT, NEW DELHI-110016,India.
  12. I.Kramosil and J.Michalek;Fuzzy metric and statistical metric spaces; Kybernetica, 11(1975), 326-334.
  13. O.Kaleva and S.Seikkala; On fuzzy metric spaces; Fuzzy Sets and Systems, 12(1984), 215-229.
  14. S.N.Mishra, N.Sharma and S.L.Singh; Common fixed points of maps on fuzzy metric spaces; International J. Math. Math. Sci., 17(1994), 253-258.
  15. B.Singh, S.Jain and Shobha Jain; Semi compatibility and common fixed point in fuzzy metric space; Bull. Cal. Math. Soc., 98(3),(2006), 229-236.
  16. B. Schweizer and A.Sklar; Probabilistic metric spaces; North Holland series in Probability and Applied Math., 5(1983).
  17. P.V.Subramanyam; Common fixed point theorems in fuzzy metric spaces; Infor. Sci.; 83(4) (1995), 109-112.
  18. A.Al-Thagafi and Naseer Shahzad; Generalized I-Nonexpansive self maps and invariant approximations; Acta Mathematica Sinica, English Series; 24(5), (2008), 867-876.
  19. L.A.Zadeh; Fuzzy sets; Information and Control, 89(1965), 338-353.
Index Terms

Computer Science
Information Sciences

Keywords

Occasionally weakly compatible maps (owc) implicit functions.