CFP last date
20 January 2025
Reseach Article

Hierarchical Clustering Algorithm - A Comparative Study

by N.Rajalingam, K.Ranjini
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 19 - Number 3
Year of Publication: 2011
Authors: N.Rajalingam, K.Ranjini
10.5120/2340-3052

N.Rajalingam, K.Ranjini . Hierarchical Clustering Algorithm - A Comparative Study. International Journal of Computer Applications. 19, 3 ( April 2011), 42-46. DOI=10.5120/2340-3052

@article{ 10.5120/2340-3052,
author = { N.Rajalingam, K.Ranjini },
title = { Hierarchical Clustering Algorithm - A Comparative Study },
journal = { International Journal of Computer Applications },
issue_date = { April 2011 },
volume = { 19 },
number = { 3 },
month = { April },
year = { 2011 },
issn = { 0975-8887 },
pages = { 42-46 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume19/number3/2340-3052/ },
doi = { 10.5120/2340-3052 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:06:03.065664+05:30
%A N.Rajalingam
%A K.Ranjini
%T Hierarchical Clustering Algorithm - A Comparative Study
%J International Journal of Computer Applications
%@ 0975-8887
%V 19
%N 3
%P 42-46
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Clustering is a data mining (machine learning) technique used to place data elements into related groups without advance knowledge on the group definitions. In this paper the authors provides an in depth explanation of implementation of agglomerative and divisive clustering algorithms for various types of attributes. Database - the details of the victims of Tsunami in Thailand during the year 2004, was taken as the test data. The algorithms are implemented using Visual programming and the formation of the clusters and running time needed of the algorithms using different linkages (agglomerative) to different types of data are taken for analysis.

References
  1. Sung Young Jung, and Taek-Soo Kim, “An Agglomerative Hierarchical Clustering Using Partial Maximum Array and Incremental Similarity Computation Method”, Proceedings of the 2001 IEEE International Conference on Data Mining, p.265-272, November 29-December 02, 2001
  2. R.J. Gil-Garcia; J.M. Badia-Contelles, “A General Framework for Agglomerative Hierarchical Clustering Algorithms A Pons-Porrata Pattern Recognition, 2006. ICPR 2006. 18th International Conference on Volume 2, 2006 Page(s):569 – 572
  3. K.P.Soman, Shyam Diwakar, and V.Ajay, “Insight into Data Mining- Theory and Practice”, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2006
  4. “Measuring Association d12 Between Clusters 1 and 2” in http://www.stat.psu.edu/online/courses/stat505/18_cluster/05_cluster_between.html
  5. Margaret H.Dunham “Data Mining Introductory and Advance Topics”, Low price Edition – Pearson Education, Delhi, 2003.
  6. “Euclidean Distance” in http://people.revoledu.com /kardi/tutorial/Similarity/EuclideanDistance.html
  7. “Cluster analysis” in http://en.wikipedia.org/ wiki/Cluster_ analysis
  8. “Levenshtein_Distance” in http://en.wikipedia.org/wiki/ Levenshtein_Distance
  9. “Similarity Metrics” in http://www.dcs.shef.ac.uk/~sam/ stringmetrics.html#hamming
  10. “Levenshtein_Distance” in http://www.dcs.shef.ac.uk/ ~sam/ stringmetrics.html#Levenshtein
  11. “Tsunami victim list“ http://www.ems.narenthorn. thaigov. net/tsunami_e/tsunamilist.php
  12. “Euclidean distance” in http://en.wikipedia.org/wiki/ Euclidean_distance#One-dimensional_distance
  13. “Distance” in http://en.wikipedia.org/wiki/Distance# Mathematics
  14. “Hierarchical Clustering Algorithms” in http://home.dei. polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html
  15. Hui-Chuan Lin (2009)“Survey and Implementation of Clustering Algorithms” an Unpublished master's thesis for master's degree, Hsinchu, Taiwan, Republic of China
  16. Jiawei Han and Micheline Kamber, “Data Mining Concepts and Techniques”, Second Edition- Morgan Kaufmann Publishers, San Francisco, 2006.
  17. Evangelos Petroutsos, “Mastering Visual Basic 6”, BPP publications, New Delhi.
  18. Yu Zhong , Anil K. Jain , M.-P. Dubuisson-Jolly, “Object Tracking Using Deformable Templates”, IEEE Transactions on Pattern Analysis and Machine Intelligence, v.22 n.5, p.544-549, May 2000.
  19. Gary Cornell, “Visual Basic 6 from the Groung Up”, Tata McGraw Hill, New Delhi, 2003.
Index Terms

Computer Science
Information Sciences

Keywords

Agglomerative Divisive Clustering Tsunami Database Data mining