CFP last date
20 June 2025
Reseach Article

Technological Advancements to Assist Visually-Impaired People: A Survey

by Maheshwari Kunte, Sarita Sanap
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Number 9
Year of Publication: 2025
Authors: Maheshwari Kunte, Sarita Sanap
10.5120/ijca2025925021

Maheshwari Kunte, Sarita Sanap . Technological Advancements to Assist Visually-Impaired People: A Survey. International Journal of Computer Applications. 187, 9 ( May 2025), 36-40. DOI=10.5120/ijca2025925021

@article{ 10.5120/ijca2025925021,
author = { Maheshwari Kunte, Sarita Sanap },
title = { Technological Advancements to Assist Visually-Impaired People: A Survey },
journal = { International Journal of Computer Applications },
issue_date = { May 2025 },
volume = { 187 },
number = { 9 },
month = { May },
year = { 2025 },
issn = { 0975-8887 },
pages = { 36-40 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume187/number9/technological-advancements-to-assist-visually-impaired-people-a-survey/ },
doi = { 10.5120/ijca2025925021 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-06-01T00:56:22.964714+05:30
%A Maheshwari Kunte
%A Sarita Sanap
%T Technological Advancements to Assist Visually-Impaired People: A Survey
%J International Journal of Computer Applications
%@ 0975-8887
%V 187
%N 9
%P 36-40
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

It is possible to use technology to support individuals with visual impairments. This paper provides a brief overview of several approaches that have been employed over time to assist people with disabilities. It covers digital, deep learning, and sensor- based methods. The study also includes an in-depth discussion of deep learning techniques and their deployment on edge de- vices. Additionally, the role of accelerators in modern computing is briefly addressed. Researchers seeking to explore further advancements in this field may find this study a useful starting point.

References
  1. M. I. A. Hossain, J. Anjom, and R. I. Chowdhury, “To- wards walkable footpath detection for the visually impaired on Bangladeshi roads with smartphones using deep edge in- telligence,” Array, vol. 26, p. 100388, 2025.
  2. V. K. N., B. S. Ullal, P. Gogoi, K. Singh, A. Biswas, and K. Yash, “Smart Navigation Aid for Visually Impaired Person using a Deep Learning Model,” in Proc. 2023 Third Int. Conf. Artif. Intell. Smart Energy (ICAIS), 2023, pp. 1049–1053.
  3. R. B. Islam, S. Akhter, F. Iqbal, M. S. U. Rahman, and R. Khan, “Deep learning based object detection and surround- ing environment description for visually impaired people,” Heliyon, vol. 9, no. 6, pp. e16924, 2023.
  4. D. Lunney, R. C. Morrison, M. M. Cetera, R. V. Hart- ness, R. T. Mills, A. D. Salt, and D. C. Sowell, ”A Microcomputer-Based Laboratory Aid for Visually Impaired Students,” IEEE Micro, vol. 3, no. 4, pp. 19–31, 1983, doi: 10.1109/MM.1983.291134.
  5. J. Brabyn, “Some new sensory aids for the visually impaired,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1988, pp.1582 vol. 4.
  6. N. K. Lodge and J. N. Slater, “Helping blind people to watch television—the AUDETEL project,” in 1992 IBC Interna- tional Broadcasting Convention, 1992, pp. 86–91.
  7. K. Thorn, “A talking measuring cup for the visually impaired, ” in Proceedings of the Johns Hopkins National Search for Computing Applications to Assist Persons with Disabilities, 1992, pp. 194–196.
  8. J. L. Leopold and A. L. Ambler, “Keyboardless visual pro- gramming using voice, handwriting, and gesture,” in Pro- ceedings. 1997 IEEE Symposium on Visual Languages (Cat. No.97TB100180), 1997, pp. 28–35.
  9. A. Tomita, T. Ebina, and R. Ishii, “An image processing method for use in a GUI for the visually impaired,” in Pro- ceedings of the IECON’97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.97CH36066), vol. 1, 1997, pp. 264–268.
  10. S. Ram and J. Sharf, “The people sensor: a mobility aid for the visually impaired,” in Digest of Papers. Second International Symposium on Wearable Computers (Cat. No.98EX215), 1998, pp. 166–167. doi: 10.1109/ISWC.1998.729548.
  11. K. Magatani, K. Sawa, and K. Yanashima, “Development of the navigation system for the visually impaired by using op- tical beacons,” in 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2, 2001, pp. 1488–1490. doi: 10.1109/IEMBS.2001.1020487.
  12. C. A. Avizzano, S. Marcheschi, M. Angerilli, M. Fontana, M. Bergamasco, T. Gutierrez, and M. Mannegeis, “A multi- finger haptic interface for visually impaired people,” in Pro- ceedings of the 12th IEEE International Workshop on Robot and Human Interactive Communication (ROMAN 2003), 2003, pp. 165–170.
  13. W. C. Lee and M. K. H. Leung, “SINVI: smart indoor naviga- tion for the visually impaired,” in ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, vol. 2, 2004,pp. 1072–1077.
  14. E. J. Toledo, J. J. Martinez, E. J. Garrigos, and J. M. Ferran- dez, “FPGA implementation of an augmented reality appli- cation for visually impaired people,” in International Confer- ence on Field Programmable Logic and Applications, 2005,pp. 723–724.
  15. B. S. Tjan, P. J. Beckmann, R. Roy, N. Giudice, andG. E. Legge, “Digital Sign System for Indoor Wayfinding for the Visually Impaired,” in 2005 IEEE Computer So- ciety Conference on Computer Vision and Pattern Recog- nition (CVPR’05) - Workshops, 2005, pp. 30–30. doi: 10.1109/CVPR.2005.442.
  16. T. Roslak, “Navigation for visually impaired - leveraging ad hoc RF environmental sensing,” in CCNC 2006. 2006 3rd IEEE Consumer Communications and Networking Confer- ence, vol. 2, 2006, pp. 1316–1317.
  17. P. Manohar and A. Parthasarathy, “An Innovative Braille Sys- tem Keyboard for the Visually Impaired,” in 2009 11th Inter- national Conference on Computer Modelling and Simulation, 2009, pp. 559–562. doi: 10.1109/UKSIM.2009.66.
  18. M. A. Ahmad, T. Ahmed, M. Aslam, A. Rehman,F. S. Alamri, S. A. Bahaj, and T. Saba, “MathVision: An Accessible Intelligent Agent for Visually Impaired People to Understand Mathematical Equations,” IEEE Access, vol. 13,pp. 6155–6165, 2025.
  19. M. Kan, L. Zhang, H. Liang, B. Zhang, M. Fang, D. Liu,S. Shan, and X. Chen, “eLabrador: A wearable navigation system for visually impaired individuals,” IEEE Transactions on Automation Science and Engineering, pp. 1–1, 2025.
  20. S. Ikram, I. S. Bajwa, A. Ikram, I. de la Torre D´ıez, C. E. U. R´ıos, and A´ . K. Castilla, “Obstacle Detection and Warning System for Visually Impaired Using IoT Sensors,” IEEE Ac- cess, vol. 13, pp. 35309–35321, 2025.
  21. M. K, A. M. V. MV, C. S. V. Chandhrakiran, K. S, B. K. S. A.Krishna, and D. S, “AI-Powered Smart Glasses and Shoes for the Visually Impaired,” in 2025 6th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI), 2025, pp. 1595–1603.
  22. F. F. Sakib, N. A. Akash, S. H. Rayied, M. S. I. Juel, andT. Hasan, “Enhancing Road Navigation for the Visually Im- paired: A Laser-Based Night Vision Approach,” in 2025 4th International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), 2025, pp. 129–133. doi: 10.1109/ICREST63960.2025.10914405.
  23. K. J, Z. S. Farooq, and P. Sirisha, “Vision Assist – Ob- ject Detection for the Blind,” in 2025 International Confer- ence on Intelligent and Innovative Technologies in Comput- ing, Electrical and Electronics (IITCEE), 2025, pp. 1–5. doi: 10.1109/IITCEE64140.2025.10915267.
  24. R. Shashanka, A. Devi, K. Lakith Gowda, S. Kushal, and V. Ravi Kumar, “VisioGuide: An AI for Visually Impaired,” in 2025 4th International Conference on Sentiment Analy- sis and Deep Learning (ICSADL), 2025, pp. 1084–1090. doi: 10.1109/ICSADL65848.2025.10932984.
  25. I. J. Cho, J. Park, and H. Bae, “A Computer Vision and Vi- brohaptic Glove-Based Piano Learning System for the Vi- sually Impaired,” in 2025 27th International Conference on Advanced Communications Technology (ICACT), 2025, pp. 334–338. doi: 10.23919/ICACT63878.2025.10936768.
  26. C. R. Mahlley, V. M. Raut, P. M. Sawai, M. K. Sat- pute, and A. Kale, “Enhancing Accessibility: A Real- Time Mobile Application for Visual Narration and Text Recognition for the Visually Impaired,” in 2025 IEEE In- ternational Students’ Conference on Electrical, Electron- ics and Computer Science (SCEECS), 2025, pp. 1–6. doi: 10.1109/SCEECS64059.2025.10940254.
  27. R. Jain, K. Gawande, A. Fadnavis, H. Bansod, P. Patne, S. Sawarkar, and S. Polade, “Smart Cap Design For Visually Impaired,” in 2025 IEEE International Stu- dents’ Conference on Electrical, Electronics and Computer Science (SCEECS), 2025, pp. 1–10. doi: 10.1109/SCEECS64059.2025.10941004.
Index Terms

Computer Science
Information Sciences

Keywords

Visually impaired navigation mean average precision deep learning computer vision