CFP last date
20 January 2026
Call for Paper
February Edition
IJCA solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 20 January 2026

Submit your paper
Know more
Random Articles
Reseach Article

An Energy-Efficient, Low-Cost Hybrid OWC–RF IoT Architecture for Biomedical Telemonitoring in Resource-Constrained Environments

by Heriniaina Mamitina Rabearison, Fanjanirina Razafison, Harlin Andriatsihoarana
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Number 76
Year of Publication: 2026
Authors: Heriniaina Mamitina Rabearison, Fanjanirina Razafison, Harlin Andriatsihoarana
10.5120/ijca2026926306

Heriniaina Mamitina Rabearison, Fanjanirina Razafison, Harlin Andriatsihoarana . An Energy-Efficient, Low-Cost Hybrid OWC–RF IoT Architecture for Biomedical Telemonitoring in Resource-Constrained Environments. International Journal of Computer Applications. 187, 76 ( Jan 2026), 22-29. DOI=10.5120/ijca2026926306

@article{ 10.5120/ijca2026926306,
author = { Heriniaina Mamitina Rabearison, Fanjanirina Razafison, Harlin Andriatsihoarana },
title = { An Energy-Efficient, Low-Cost Hybrid OWC–RF IoT Architecture for Biomedical Telemonitoring in Resource-Constrained Environments },
journal = { International Journal of Computer Applications },
issue_date = { Jan 2026 },
volume = { 187 },
number = { 76 },
month = { Jan },
year = { 2026 },
issn = { 0975-8887 },
pages = { 22-29 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume187/number76/an-energy-efficient-low-cost-hybrid-owcrf-iot-architecture-for-biomedical-telemonitoring-in-resource-constrained-environments/ },
doi = { 10.5120/ijca2026926306 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2026-01-20T22:56:38+05:30
%A Heriniaina Mamitina Rabearison
%A Fanjanirina Razafison
%A Harlin Andriatsihoarana
%T An Energy-Efficient, Low-Cost Hybrid OWC–RF IoT Architecture for Biomedical Telemonitoring in Resource-Constrained Environments
%J International Journal of Computer Applications
%@ 0975-8887
%V 187
%N 76
%P 22-29
%D 2026
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper presents the design, modeling, and experimental validation of a hybrid optical wireless–radio frequency (OWC–RF) IoT architecture for biomedical telemonitoring, specifically tailored to resource-constrained healthcare environments. Unlike conventional RF-only body area networks, the proposed system exploits optical wireless communication for short-range intra-BAN transmission, combined with low-power RF technologies (BLE, LoRa, and GSM) for resilient backhaul connectivity. The platform integrates a multisensor acquisition unit supporting electrocardiogram (ECG), SpO₂, body temperature, blood pressure, phonocardiogram (PCG), and photoplethysmography (PPG) signals. Local embedded processing enables data pre-processing and compression, while a standards-based interoperability pipeline ensures compliance with ISO/IEEE 11073, HL7 v2.x, and HL7 FHIR. Experimental validation conducted on a laboratory testbed and clinically inspired simulation scenarios demonstrates an end-to-end latency below 3 s, communication reliability exceeding 97%, battery autonomy greater than 34 h, and a per-node hardware cost below 30 USD. These results confirm the feasibility of frugal, energy-efficient, and interoperable telemonitoring systems, and establish a scalable foundation for next-generation IoT-enabled digital health infrastructures in low- and middle-income countries.

References
  1. W. H. Organization, « Noncommunicable diseases: key facts », 2023. [En ligne]. Disponible sur: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
  2. G. A. Roth et al., « Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study », J. Am. Coll. Cardiol., vol. 76, no 25, p. 2982‑3021, déc. 2020, doi: 10.1016/j.jacc.2020.11.010.
  3. A. Rocha et al., « Edge AI for Internet of Medical Things: A literature review », Comput. Electr. Eng., vol. 118, p. 109202, 2024, doi: 10.1016/j.compeleceng.2024.109202.
  4. H. M. Rabearison F. Razafison, N. Razafimanjato, M. Zafintsalama et H. Andriatsihoarana, « Design of a Low-Cost, Energy-Efficient Telemedicine Platform: An Innovative Solution for Medical Consultations in Remote Areas », Int. J. Adv. Eng. Manag., vol. 7, no 3, p. 90‑121, mars 2025, doi: 10.35629/252-070390121.
  5. M. Elkahlout, M. M. Abu-Saqer, A. F. Aldaour, A. Issa, et M. Debeljak, « IoT-Based Healthcare and Monitoring Systems for the Elderly: A Literature Survey Study », in 2020 International Conference on Assistive and Rehabilitation Technologies (iCareTech), Gaza, Palestine: IEEE, 2020, p. 92‑96. doi: 10.1109/iCareTech49914.2020.00025.
  6. B. Sylla, O. Ismaila, et G. Diallo, « 25 Years of Digital Health Toward Universal Health Coverage in Low- and Middle-Income Countries: Rapid Systematic Review », J. Med. Internet Res., vol. 27, p. e59042, mai 2025, doi: 10.2196/59042.
  7. H. M. Rabearison F. Razafison, N. Razafimanjato, M. Zafintsalama et H. Andriatsihoarana, « Access to Healthcare and Deployment of Telemedicine in Madagascar: Context and Methodology », Int. J. Innov. Res. Sci. Eng. Technol., vol. 14, no 3, mars 2025, doi: 10.15680/IJIRSET.2025.14033019.
  8. B. Latré B. Braem, I. Moerman, C. Blondia et P. Demeester, « A survey on wireless body area networks », Wirel. Netw., vol. 17, no 1, p. 1‑18, janv. 2011, doi: 10.1007/s11276-010-0252-4.
  9. IEEE, « IEEE Standard for Local and metropolitan area networks – Part 15.6: Wireless Body Area Networks », IEEE, New York, NY, Standard IEEE Std 802.15.6-2012, févr. 2012. doi: 10.1109/IEEESTD.2012.6161600.
  10. P. Hall et Y. Hao, Antennas and Propagation for Body-Centric Wireless Communications, 2e éd. Norwood, MA: Artech House, 2012.
  11. J. R. Barry et J. M. Kahn, « Link Design for Nondirected Wireless Infrared Communications », Appl. Opt., vol. 34, no 19, p. 3764‑3776, 1995, doi: 10.1364/AO.34.003764.
  12. R. Boubezari, H. Le-Minh, A. T. Pham, et Z. Ghassemlooy, « Visible light communications for blind indoor areas: Effect of LED layout on energy efficiency and cell formation », IEEE Access, vol. 5, p. 21732‑21740, 2017, doi: 10.1109/ACCESS.2017.2757506.
  13. H. Haas, L. Yin, Y. Wang, et C. Chen, « What is LiFi? », J. Light. Technol., vol. 34, no 6, p. 1533‑1544, mars 2016, doi: 10.1109/JLT.2015.2510021.
  14. A. Bröring et al., « Semantic Gateway as a Service architecture for IoT Interoperability », 2014. doi: 10.48550/arXiv.1410.4977.
  15. IEEE, « Health informatics—Personal health device communication—Part 20601: Application profile—Optimized exchange protocol », IEEE Standard 11073‑20601, 2010.
  16. H. International, « FHIR Release 4 (R4): Fast Healthcare Interoperability Resources ». [En ligne]. Disponible sur: https://www.hl7.org/fhir/
  17. K. Adambounou et al., « Plateforme de télémédecine moindre coût pour les pays en développement “Low cost” telemedicine platform for developing countries », Eur. Res. Telemed. Rech. Eur. En Télémédecine, vol. 2, no 2, p. 49‑56, juin 2013, doi: 10.1016/j.eurtel.2013.03.002.
  18. H. M. Rabearison F. Razafison, N. Razafimanjato, M. Zafintsalama et H. Andriatsihoarana, « Architecture and Organizational Protocol of a Connected Medical Monitoring Device », Int. J. Sci. Res. Technol., vol. 2, no 4, p. 204‑216, 2025, doi: 10.5281/zenodo.1519178.
  19. A. S. Rajasekaran, L. Sowmiya, A. Maria, et R. Kannadasan, « A Survey on Exploring the Challenges and Applications of Wireless Body Area Networks (WBANs) », Cyber Secur. Appl., vol. 2, p. 100047, 2024, doi: 10.1016/j.csa.2024.100047.
  20. L. Chevalier, « Performances de l’optique sans fil pour les réseaux de capteurs corporels », PhD thesis, Université de Limoges, Limoges, France, 2015. [En ligne]. Disponible sur: https://theses.hal.science/tel-01290086v1
  21. N. S. Chilamkurthy, O. J. Pandey, A. Ghosh, L. R. Cenkeramaddi, et H.-N. Dai, « Low-Power Wide-Area Networks: A Broad Overview of Its Different Aspects », IEEE Access, vol. 10, p. 81926‑81959, 2022, doi: 10.1109/ACCESS.2022.3196182.
  22. L. Catarinucci et al., « An IoT-Aware Architecture for Smart Healthcare Systems », IEEE Internet Things J., vol. 2, no 6, p. 515‑526, déc. 2015, doi: 10.1109/JIOT.2015.2417684.
  23. H. Alemdar et C. Ersoy, « Wireless sensor networks for healthcare: A survey », Comput. Netw., vol. 54, no 15, p. 2688‑2710, 2010, doi: 10.1016/j.comnet.2010.05.003.
  24. S. Maudet, « Analyse et modélisation énergétiques des réseaux de communications pour l’IoT », PhD thesis, Nantes Université, Nantes, France, 2024. [En ligne]. Disponible sur: https://theses.hal.science/tel-04662678v1
  25. M. Hernandez, R. Kohno, T. Kobayashi, et M. Kim, « New Revision of IEEE 802.15.6 Wireless Body Area Networks », in 2022 IEEE 16th International Symposium on Medical Information and Communication Technology (ISMICT), IEEE, 2022. doi: 10.1109/ISMICT56646.2022.9828139.
  26. K.-H. Chang, « Bluetooth: a viable solution for IoT? [industry perspectives] », IEEE Wirel. Commun., no 21, p. 6‑7, déc. 2014.
  27. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, et M. Ayyash, « Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications », IEEE Commun. Surv. Tutor., vol. 17, no 4, p. 2347‑2376, 2015.
  28. B. S. Chaudhari et M. Zennaro, Éd., LPWAN Technologies for IoT and M2M Applications. Cambridge, MA: Academic Press, 2020. doi: 10.1016/C2018-0-04787-8.
  29. K. Mekki, E. Bajic, F. Chaxel, et F. Meyer, « A Comparative Study of LPWAN Technologies for Large-Scale IoT Deployment », ICT Express, vol. 5, no 1, p. 1‑7, mars 2019, doi: 10.1016/j.icte.2017.12.005.
  30. H. M. Rabearison F. Razafison, N. Razafimanjato, M. Zafintsalama et H. Andriatsihoarana, « UML Modeling and Full Stack Implementation of a Teleconsultation Platform with Real-Time Management of Patients and Medical Procedures », Int. J. Innov. Sci. Res. Technol., vol. 10, no 4, p. 3236‑3248, avr. 2025, doi: 10.38124/ijisrt25apr2048.
  31. C. Li, J. Wang, S. Wang, et Y. Zhang, « A Review of IoT Applications in Healthcare », Neurocomputing, vol. 565, p. 127017, janv. 2024, doi: 10.1016/j.neucom.2023.127017.
  32. IHE, « Patient Care Device Technical Framework, Volume 1, Profil DEC », IHE International, 2024. [En ligne]. Disponible sur: https://ihe.net
  33. J. Polastre, R. Szewczyk, et D. Culler, « Telos: Enabling Ultra-Low Power Wireless Research », Inf. Process. Sens. Netw., p. 364‑369, 2005, doi: 10.1109/IPSN.2005.1440950.
  34. K. Dong, M. Kong, et M. Wang, « Error Performance Analysis for OOK Modulated Optical Camera Communication Systems », Opt. Commun., vol. 574, p. 131121, janv. 2025, doi: 10.1016/j.optcom.2024.131121.
  35. LoRa Alliance, « LoRaWAN\textsuperscript® Specification v1.1 ». [En ligne]. Disponible sur: https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/
  36. World Health Organization, WHO guideline: Recommendations on Digital Interventions for Health System Strengthening. Geneva: WHO, 2019.
  37. A. Hamza et T. Tripp, « Optical Wireless Communication for the Internet of Things: Advances, Challenges, and Opportunities », TechRxiv, juill. 2020, doi: 10.36227/techrxiv.12659789.v1.
  38. M. Ghaemifar, S. Motie, S. M. Moosaviun, Y. Nemati, et S. Ebadollahi, « Bluetooth Low Energy for Indoor Positioning: Challenges, Algorithms and Datasets », Autom. Constr., vol. 177, p. 106316, sept. 2025, doi: 10.1016/j.autcon.2025.106316.
  39. P. Finet, « Production et transmission des données de suivi des patients atteints de maladies chroniques dans un contexte d’intégration de la télémédecine dans un système d’information pour l’aide à la décision », PhD thesis, Université de Rennes 1, Rennes, France, 2017.
  40. F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, et T. Watteyne, « Understanding the Limits of LoRaWAN », IEEE Commun. Mag., vol. 55, no 9, p. 34‑40, sept. 2017, doi: 10.1109/MCOM.2017.1600613.
  41. H. Axelsson, A. Bergstrom, P. Bjorken, P. de Bruin, et M. Sundberg, « Improved Latency Performance with GSM/EDGE Continued Evolution », IEEE Veh. Technol. Conf., p. 1‑5, 2006, doi: 10.1109/VTCF.2006.272.
  42. P. Sarwesh, N. S. V. Shekar, et K. Chandrasekaran, « Energy Efficient Network Architecture for IoT Applications », Int. Conf. Green Comput. Internet Things ICGCIoT, p. 784‑789, 2015, doi: 10.1109/ICGCIoT.2015.7380569.
  43. M. Chen, J. Wan, et F. Li, « Body Sensor Networks for Medical Applications », IEEE Commun. Mag., vol. 56, no 4, p. 98‑104, 2018, doi: 10.1109/MCOM.2018.1700784.
  44. B.-R. Chen, S.-M. Cheng, et J.-J. Lin, « Energy-Efficient BLE Device Discovery for Internet of Things », Proc. Fifth Int. Symp. Comput. Netw. CANDAR, p. 75‑79, 2017, doi: 10.1109/CANDAR.2017.95.
Index Terms

Computer Science
Information Sciences

Keywords

Hybrid OWC–RF Biomedical Telemonitoring Wireless Body Area Networks HL7 FHIR Interoperability Energy-Efficient IoT Low-Cost Telemedicine Resource-Constrained Environments