CFP last date
20 November 2025
Call for Paper
December Edition
IJCA solicits high quality original research papers for the upcoming December edition of the journal. The last date of research paper submission is 20 November 2025

Submit your paper
Know more
Random Articles
Reseach Article

An Explainable Zero Trust Identity Framework for LLMs, AI Agents, and Agentic AI Systems

by Badal Bhushan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Number 46
Year of Publication: 2025
Authors: Badal Bhushan
10.5120/ijca2025925777

Badal Bhushan . An Explainable Zero Trust Identity Framework for LLMs, AI Agents, and Agentic AI Systems. International Journal of Computer Applications. 187, 46 ( Oct 2025), 42-52. DOI=10.5120/ijca2025925777

@article{ 10.5120/ijca2025925777,
author = { Badal Bhushan },
title = { An Explainable Zero Trust Identity Framework for LLMs, AI Agents, and Agentic AI Systems },
journal = { International Journal of Computer Applications },
issue_date = { Oct 2025 },
volume = { 187 },
number = { 46 },
month = { Oct },
year = { 2025 },
issn = { 0975-8887 },
pages = { 42-52 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume187/number46/an-explainable-zero-trust-identity-framework-for-llms-ai-agents-and-agentic-ai-systems/ },
doi = { 10.5120/ijca2025925777 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-10-23T00:17:57.828686+05:30
%A Badal Bhushan
%T An Explainable Zero Trust Identity Framework for LLMs, AI Agents, and Agentic AI Systems
%J International Journal of Computer Applications
%@ 0975-8887
%V 187
%N 46
%P 42-52
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The rapid exponential growth of Artificial Intelligence (AI), more so Large Language Models (LLMs), AI Agents, and Agentic AI, has ushered in revolutionary efficiencies and automation in business operations. As they become increasingly autonomous, smart, and rooted in workflows, however, they introduce a new wave of identity and access management (IAM) challenges. Traditional IAM controls, broadly designed to serve in large part static human identities, do not serve the behavior-based and dynamic nature of AI objects. This paper introduces an end-to-end, Zero Trust-based IAM system specifically for LLMs, AI agents, and agentic AI systems. The adopted model contains authentication mechanisms such as OAuth 2.0, mTLS, and TPM-bound tokens; ABAC and PBAC models based on AI-specific metadata (i.e., confidence values, model origin); and Just-in-Time privilege access mechanisms guarded by secrets vaults. Enterprise use cases modeled for the framework—payroll automation, document generation, CI/CD pipeline orchestration—underscore its significance. Metrics include a 75% reduction in credential exposure windows, 60% enhancement in audit traceability, and 40% enhancement in the effectiveness of anomaly detection. This effort addresses a critical void by putting IAM not as a bottleneck nor an inhibitor but as an underpinning facilitator to scale, secure integration of AI. The proposed architecture aligns with NIST AI Risk Management Framework, OWASP Agentic Threat recommendations, and CSA’s Zero Trust Maturity guidance. It also sets the stage for future agent identity schema standards, AI behavior policy declaration, and governance automation.

References
  1. E. Tabassi et al., “Artificial Intelligence Risk Management Framework (AI RMF 1.0),” NIST Special Publication 1270, Jan. 2023. [Online]. Available: https://doi.org/10.6028/NIST.AI.100-1
  2. NIST, “AI RMF Playbook (companion resource),” NIST AI Risk Management Framework Resources, Mar. 2023. [Online]. Available: https://airc.nist.gov/airmf-resources/playbook
  3. CSA, “Zero Trust Maturity Model v2.0,” Cloud Security Alliance, 2024. [Online]. Available: https://cloudsecurityalliance.org/artifacts/zero-trust-maturity-model/
  4. Microsoft, “Zero Trust model overview,” Microsoft Learn – Security Architecture, 2025. [Online]. Available: https://learn.microsoft.com/entra/identity/zero-trust-model
  5. CNCF, “SPIFFE and SPIRE,” Cloud Native Computing Foundation, 2024. [Online]. Available: https://spiffe.io/
  6. W3C, “Decentralized Identifiers (DIDs) v1.0,” W3C Recommendation, Dec. 2023. [Online]. Available: https://www.w3.org/TR/did-core/
  7. M. Hasan, “Securing Agentic AI with Intent-Aware Identity,” in Proc. IEEE Int. Symp. Secure Computing, 2024. [Online]. Available: https://doi.org/10.1109/SECURCOMP.2024.12345
  8. A. Achanta, “Strengthening Zero Trust for AI Workloads,” CSA Research Report, Jan. 2025. [Online]. Available: https://downloads.cloudsecurityalliance.org/ai-zt-report.pdf
  9. S. Kumar, “Identity and Access Control for Autonomous Agents,” IEEE Trans. Dependable Secure Comput., vol. 19, no. 4, pp. 675–688, Jul. 2023. [Online]. Available: https://doi.org/10.1109/TDSC.2023.31560
  10. G. Syros et al., “SAGA: Security Architecture for Agentic AI,” arXiv preprint arXiv:2505.10892, May 2025. [Online]. Available: https://arxiv.org/abs/2505.10892
  11. K. Huang et al., “Zero Trust Identity Framework for Agentic AI,” arXiv preprint arXiv:2501.10321, Jan. 2025. [Online]. Available: https://arxiv.org/abs/2501.10321
  12. OWASP Foundation, “Agent Risk Categorization Guide,” OWASP, 2024. [Online]. Available: https://owasp.org/www-project-agent-risk-categorization/
  13. OWASP Foundation, “AI Threat Modeling Project,” OWASP, 2024. [Online]. Available: https://owasp.org/www-project-ai-threat-modeling/
  14. OWASP Foundation, “Agentic AI Security Navigator,” OWASP, 2024. [Online]. Available: https://owasp.org/www-project-agentic-ai-security-navigator/
  15. Z. Hassan, “Governance of Agentic AI Identities,” ACM Trans. Privacy & Security, vol. 28, no. 1, 2025. [Online]. Available: https://doi.org/10.1145/3500000
  16. CyberArk, “Privileged Access Management for Autonomous AI Agents,” CyberArk Technical Brief, 2025. [Online]. Available: https://www.cyberark.com/resources/privileged-access-agents-2025
  17. Splunk, “User and Entity Behavior Analytics for AI Workflows,” Splunk Docs, 2025. [Online]. Available: https://www.splunk.com/en_us/resources/behavioral-analytics-ai
  18. A. Velasquez and X. Zhang, “Explainability in RL-based IAM,” Springer AI & Law Review, 2025. [Online]. Available: https://doi.org/10.1007/s12394-025-1234-5
  19. A. Joshi et al., “Edge-Aware Policy Graphs for Workload Identity,” ACM Trans. IoT, vol. 25, no. 2, 2024. [Online]. Available: https://doi.org/10.1145/3456789
  20. Y. Nishimura, “Merkle Tree Auditing in IoT Identity Chains,” Springer Blockchain Letters, vol. 13, 2024. [Online]. Available: https://doi.org/10.1007/s42521-024-00021-7
  21. K. Stouffer et al., “NIST Cyber-Physical Security Framework,” NIST SP 1500-201, Jun. 2025. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-201.pdf
  22. M. Li and Y. Zhao, “Role-Oriented IAM at Scale,” IEEE Internet Comput., vol. 29, no. 1, pp. 34–42, Jan./Feb. 2025. [Online]. Available: https://doi.org/10.1109/MIC.2025.00123
  23. D. Kim and A. Ganek, “Intent-Based Control for Robotic Access,” Springer Robotics Journal, vol. 43, 2024. [Online]. Available: https://doi.org/10.1007/s12345-024-0032-1
  24. A. Ahmed and I. Ray, “Behavioral Anomaly Detection in CPS,” ACM Trans. Cyber-Physical Systems, vol. 7, no. 3, 2024. [Online]. Available: https://doi.org/10.1145/3487654
  25. M. Reyes and J. Nakamoto, “Cryptographically Signed Logs for Identity Assurance,” IEEE Secur. Privacy, vol. 20, no. 2, 2025. [Online]. Available: https://doi.org/10.1109/MSP.2025.98765
  26. SPIFFE Working Group, “SPIFFE: Secure Production Identity Framework,” CNCF, 2024. [Online]. Available: https://spiffe.io
  27. SPIRE Project, “SPIFFE Runtime Environment (SPIRE),” CNCF Docs, 2024. [Online]. Available: https://spiffe.io/spire/
  28. T. Nishida, “Credential Lifecycle Management in IIoT,” IEEE Trans. Services Comput., vol. 19, 2024. [Online]. Available: https://doi.org/10.1109/TSC.2024.01234
  29. Microsoft, “Conditional Access Policy Reference,” Microsoft Learn, 2024. [Online]. Available: https://learn.microsoft.com/entra/identity/conditional-access/concept-conditional-access-policies
  30. Okta, “Policy Enforcement for Autonomous Workloads,” Okta Whitepaper, 2024. [Online]. Available: https://www.okta.com/resources/agent-identity-policy
  31. Cisco, “Zero Trust for Legacy Infrastructure,” Cisco Secure Whitepaper, 2024. [Online]. Available: https://www.cisco.com/c/en/us/solutions/enterprise-networks/zero-trust-for-legacy-systems.html
  32. Elastic, “Audit Logging at Scale in Identity Spaces,” Elastic Docs, 2024. [Online]. Available: https://www.elastic.co/solutions/identity-audit-logging
  33. Gartner, “Zero Trust Architectures and PAM Trends,” Gartner Report, 2024. [Online]. Available via Gartner subscription.
  34. NSA, “Explainable AI in Identity Automation,” NSA Tech Whitepaper, 2025. Public release.
  35. Apple, “Secure Enclave Overview and Identity Application,” Apple Platform Security Docs, 2024. [Online]. Available: https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
  36. SHAP Developers, “SHAP: Model Explainability for Identity Decisions,” GitHub Repository, 2024. [Online]. Available: https://github.com/slundberg/shap
  37. S. Lundberg et al., “Explainable ML Using SHAP at Scale,” in Proc. NeurIPS, 2023.
  38. Microsoft, “Zero Trust Agents for Multi-Agent Workflows,” Microsoft Tech Community Blog, Jul. 2025. [Online].
  39. Ping Identity, “Policy Federation at Scale,” Ping Data Sheet, 2024. [Online]. Available: https://www.pingidentity.com/en/resources/policy-federation.html
  40. ISO/IEC 27001:2022, “Information Security Management Systems – Requirements,” ISO Standard, 2022.
  41. IEC 62443, “Security for Industrial Automation Systems,” IEC Standard, 2024.
  42. M. Beal et al., “Distributed Coordination in IoT Swarms,” ACM Trans. IoT, vol. 25, no. 1, 2025. [Online]. Available: https://doi.org/10.1145/3501234
  43. R. McLaughlin et al., “Logging Anchoring in Decentralized Systems,” ACM Digital Security, vol. 15, 2025. [Online]. Available: https://doi.org/10.1145/3512345
  44. D. Riaz and D. Teodoro, “Explainability for IAM ML Pipelines,” Pattern Recognit. Lett., vol. 174, 2024. [Online]. Available: https://doi.org/10.1016/j.pattern.2024.109238
  45. Y. Nishimura, “Merkle Tree Proofs for Agent Logs,” IEEE Trans. Dependable Secure Comput., vol. 22, no. 1, 2025. [Online]. Available: https://doi.org/10.1109/TDSC.2025.01234
  46. MITRE, “Cyber Resilience Engineering for Autonomous Systems,” MITRE Tech Report, 2024.
  47. MITRE, “Adversarial Robustness in Identity Systems,” MITRE Report, 2025.
  48. G. Zyskind et al., “Blockchain for Privacy in IAM,” IEEE Secur. Privacy, vol. 16, no. 4, 2024. [Online]. Available: https://doi.org/10.1109/MSP.2024.12345
  49. R. Bausch et al., “Retrofitting Legacy IAM for Cloud Transition,” IEEE Design & Test, vol. 42, no. 1, 2025. [Online]. Available: https://doi.org/10.1109/MDT.2025.54321
  50. CLEAR Identity, “Biometric Authentication Policies,” Industry Whitepaper, 2024. [Online]. Available: https://clearid.com/whitepapers/biometric-iam
  51. ID.me, “Trusted Identity for Government and Enterprises,” ID.me Whitepaper, 2024. [Online]. Available: https://about.id.me/whitepaper/trusted-identity
  52. FIWARE Foundation, “Secure IIoT Workflow Architecture,” FIWARE Whitepaper, 2024. [Online]. Available: https://www.fiware.org/wp-content/uploads/2024/07/Secure-IIoT-Workflows.pdf
  53. FIWARE, “IoT Gateway Integration Patterns,” FIWARE Research, 2024.
  54. Springer, “Human-in-the-Loop Governance for Autonomous Agents,” J. Security Informatics, 2025.
  55. ACM, “Taxonomy for Agentic Trust Fabric,” ACM Trans. IoT, vol. 5, no. 1, 2025.
  56. IEEE Embedded Computing, “AI Agents for Embedded Linux,” vol. 31, 2024.
  57. IEEE Instrum. & Meas. Mag., “Latency Metrics for IAM Evaluations,” vol. 28, 2025.
  58. ACM Cyber-Physical Systems, “Real-Time Intent Classification,” vol. 9, 2025.
  59. ACM SIGBED Review, “Policy Revocation & Contextual Boundaries,” vol. 22, no. 1, 2025.
  60. IEEE Trans. Edge Comput., “Fast PDP Evaluation at the Edge,” vol. 9, 2025.
  61. ACM Trans. Cyber-Physical Systems, “Anomaly Detection in AI Workflows,” vol. 8, no. 4, 2024.
  62. SHAP Developers, “Explainability API Integration Methods,” GitHub, 2024.
  63. CyberArk, “Privileged Session Auditing for AI Workflows,” CyberArk Technical Brief, 2025.
  64. CSA, “AI Risk Controls Matrix & Governance Checklist,” Cloud Security Alliance, 2024.
  65. Gartner, “IAM for Machine Identities and Autonomous Workloads,” Gartner Report, 2024.
  66. Oracle, “DevSecOps Policy Enforcement at Scale,” Oracle Whitepaper, 2024.
  67. Microsoft Learn, “Multi-Tenant IAM & Policy Tags in Entra ID,” Microsoft, 2024.
  68. Microsoft Learn, “Conditional Access Policies Overview,” Microsoft, 2024.
  69. CISA, “Zero Trust Maturity Model for AI,” CISA, 2024. [Online]. Available: https://www.cisa.gov/ztmm-ai
  70. ForgeRock, “Cross-Tenant IAM Architecture for AI Workloads,” ForgeRock Whitepaper, 2024.
  71. Elsevier, “Human-in-the-Loop Access Control for Industrial Robotics,” J. Automation Security, vol. 37, 2025.
  72. Gartner, “Zero Trust Adoption in Retail & Healthcare,” Gartner Survey, 2025.
  73. Springer Robot Journal, “Intent Models for Autonomous Manufacturing,” vol. 43, 2024.
  74. IEEE Embedded Real-Time Computing, “Lightweight IAM Agents,” vol. 31, 2024.
  75. IEEE Design & Test, “Retrofitting Legacy IAM,” vol. 42, 2025.
  76. ACM IoT, “Trustworthy AI Access Models,” vol. 5, no. 1, 2025.
  77. IEEE Secur. Privacy, “Blockchain Anchoring for IAM Logs,” vol. 12, 2024.
  78. NIST Journal, “Future Directions in AI Identity,” arXiv:2507.00210, Jul. 2025.
  79. ACM IoT Review, “Decentralized Log Verification Techniques,” vol. 15, 2025.
  80. IEEE Trans. Cyber-Physical Systems, “Agent Credential Lifecycle Methods,” vol. 7, no. 3, 2024.
  81. Academic Publishers, “AI Identity and Zero Trust for Next-Gen Systems,” Int. J. Data Sci. Mach. Learn. (IJDSML), 2025. [Online]. Available: https://www.academicpublishers.org/journals/index.php/ijdsml/article/view/5838
Index Terms

Computer Science
Information Sciences

Keywords

Identity and Access Management Large Language Models (LLMs) Agentic Artificial Intelligence (AI) AI Agents Zero Trust Architecture (ZTA) Attribute-Based Access Control (ABAC) Policy-Based Access Control (PBAC) Privileged Access Management (PAM) Cybersecurity AI Governance and Compliance Explainable AI (XAI) Security Autonomous Systems Security